MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  offval22 Structured version   Visualization version   GIF version

Theorem offval22 7779
Description: The function operation expressed as a mapping, variation of offval2 7420. (Contributed by SO, 15-Jul-2018.)
Hypotheses
Ref Expression
offval22.a (𝜑𝐴𝑉)
offval22.b (𝜑𝐵𝑊)
offval22.c ((𝜑𝑥𝐴𝑦𝐵) → 𝐶𝑋)
offval22.d ((𝜑𝑥𝐴𝑦𝐵) → 𝐷𝑌)
offval22.f (𝜑𝐹 = (𝑥𝐴, 𝑦𝐵𝐶))
offval22.g (𝜑𝐺 = (𝑥𝐴, 𝑦𝐵𝐷))
Assertion
Ref Expression
offval22 (𝜑 → (𝐹f 𝑅𝐺) = (𝑥𝐴, 𝑦𝐵 ↦ (𝐶𝑅𝐷)))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem offval22
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 offval22.a . . . 4 (𝜑𝐴𝑉)
2 offval22.b . . . 4 (𝜑𝐵𝑊)
31, 2xpexd 7467 . . 3 (𝜑 → (𝐴 × 𝐵) ∈ V)
4 xp1st 7717 . . . . 5 (𝑧 ∈ (𝐴 × 𝐵) → (1st𝑧) ∈ 𝐴)
5 xp2nd 7718 . . . . 5 (𝑧 ∈ (𝐴 × 𝐵) → (2nd𝑧) ∈ 𝐵)
64, 5jca 512 . . . 4 (𝑧 ∈ (𝐴 × 𝐵) → ((1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵))
7 fvex 6682 . . . . . 6 (2nd𝑧) ∈ V
8 fvex 6682 . . . . . 6 (1st𝑧) ∈ V
9 nfcv 2982 . . . . . . 7 𝑦(2nd𝑧)
10 nfcv 2982 . . . . . . 7 𝑥(2nd𝑧)
11 nfcv 2982 . . . . . . 7 𝑥(1st𝑧)
12 nfv 1908 . . . . . . . 8 𝑦(𝜑𝑥𝐴 ∧ (2nd𝑧) ∈ 𝐵)
13 nfcsb1v 3911 . . . . . . . . 9 𝑦(2nd𝑧) / 𝑦𝐶
1413nfel1 2999 . . . . . . . 8 𝑦(2nd𝑧) / 𝑦𝐶 ∈ V
1512, 14nfim 1890 . . . . . . 7 𝑦((𝜑𝑥𝐴 ∧ (2nd𝑧) ∈ 𝐵) → (2nd𝑧) / 𝑦𝐶 ∈ V)
16 nfv 1908 . . . . . . . 8 𝑥(𝜑 ∧ (1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵)
17 nfcsb1v 3911 . . . . . . . . 9 𝑥(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶
1817nfel1 2999 . . . . . . . 8 𝑥(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 ∈ V
1916, 18nfim 1890 . . . . . . 7 𝑥((𝜑 ∧ (1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 ∈ V)
20 eleq1 2905 . . . . . . . . 9 (𝑦 = (2nd𝑧) → (𝑦𝐵 ↔ (2nd𝑧) ∈ 𝐵))
21203anbi3d 1435 . . . . . . . 8 (𝑦 = (2nd𝑧) → ((𝜑𝑥𝐴𝑦𝐵) ↔ (𝜑𝑥𝐴 ∧ (2nd𝑧) ∈ 𝐵)))
22 csbeq1a 3901 . . . . . . . . 9 (𝑦 = (2nd𝑧) → 𝐶 = (2nd𝑧) / 𝑦𝐶)
2322eleq1d 2902 . . . . . . . 8 (𝑦 = (2nd𝑧) → (𝐶 ∈ V ↔ (2nd𝑧) / 𝑦𝐶 ∈ V))
2421, 23imbi12d 346 . . . . . . 7 (𝑦 = (2nd𝑧) → (((𝜑𝑥𝐴𝑦𝐵) → 𝐶 ∈ V) ↔ ((𝜑𝑥𝐴 ∧ (2nd𝑧) ∈ 𝐵) → (2nd𝑧) / 𝑦𝐶 ∈ V)))
25 eleq1 2905 . . . . . . . . 9 (𝑥 = (1st𝑧) → (𝑥𝐴 ↔ (1st𝑧) ∈ 𝐴))
26253anbi2d 1434 . . . . . . . 8 (𝑥 = (1st𝑧) → ((𝜑𝑥𝐴 ∧ (2nd𝑧) ∈ 𝐵) ↔ (𝜑 ∧ (1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵)))
27 csbeq1a 3901 . . . . . . . . 9 (𝑥 = (1st𝑧) → (2nd𝑧) / 𝑦𝐶 = (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶)
2827eleq1d 2902 . . . . . . . 8 (𝑥 = (1st𝑧) → ((2nd𝑧) / 𝑦𝐶 ∈ V ↔ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 ∈ V))
2926, 28imbi12d 346 . . . . . . 7 (𝑥 = (1st𝑧) → (((𝜑𝑥𝐴 ∧ (2nd𝑧) ∈ 𝐵) → (2nd𝑧) / 𝑦𝐶 ∈ V) ↔ ((𝜑 ∧ (1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 ∈ V)))
30 offval22.c . . . . . . . 8 ((𝜑𝑥𝐴𝑦𝐵) → 𝐶𝑋)
3130elexd 3520 . . . . . . 7 ((𝜑𝑥𝐴𝑦𝐵) → 𝐶 ∈ V)
329, 10, 11, 15, 19, 24, 29, 31vtocl2gf 3575 . . . . . 6 (((2nd𝑧) ∈ V ∧ (1st𝑧) ∈ V) → ((𝜑 ∧ (1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 ∈ V))
337, 8, 32mp2an 688 . . . . 5 ((𝜑 ∧ (1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 ∈ V)
34333expb 1114 . . . 4 ((𝜑 ∧ ((1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵)) → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 ∈ V)
356, 34sylan2 592 . . 3 ((𝜑𝑧 ∈ (𝐴 × 𝐵)) → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 ∈ V)
36 nfcsb1v 3911 . . . . . . . . 9 𝑦(2nd𝑧) / 𝑦𝐷
3736nfel1 2999 . . . . . . . 8 𝑦(2nd𝑧) / 𝑦𝐷 ∈ V
3812, 37nfim 1890 . . . . . . 7 𝑦((𝜑𝑥𝐴 ∧ (2nd𝑧) ∈ 𝐵) → (2nd𝑧) / 𝑦𝐷 ∈ V)
39 nfcsb1v 3911 . . . . . . . . 9 𝑥(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐷
4039nfel1 2999 . . . . . . . 8 𝑥(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐷 ∈ V
4116, 40nfim 1890 . . . . . . 7 𝑥((𝜑 ∧ (1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐷 ∈ V)
42 csbeq1a 3901 . . . . . . . . 9 (𝑦 = (2nd𝑧) → 𝐷 = (2nd𝑧) / 𝑦𝐷)
4342eleq1d 2902 . . . . . . . 8 (𝑦 = (2nd𝑧) → (𝐷 ∈ V ↔ (2nd𝑧) / 𝑦𝐷 ∈ V))
4421, 43imbi12d 346 . . . . . . 7 (𝑦 = (2nd𝑧) → (((𝜑𝑥𝐴𝑦𝐵) → 𝐷 ∈ V) ↔ ((𝜑𝑥𝐴 ∧ (2nd𝑧) ∈ 𝐵) → (2nd𝑧) / 𝑦𝐷 ∈ V)))
45 csbeq1a 3901 . . . . . . . . 9 (𝑥 = (1st𝑧) → (2nd𝑧) / 𝑦𝐷 = (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐷)
4645eleq1d 2902 . . . . . . . 8 (𝑥 = (1st𝑧) → ((2nd𝑧) / 𝑦𝐷 ∈ V ↔ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐷 ∈ V))
4726, 46imbi12d 346 . . . . . . 7 (𝑥 = (1st𝑧) → (((𝜑𝑥𝐴 ∧ (2nd𝑧) ∈ 𝐵) → (2nd𝑧) / 𝑦𝐷 ∈ V) ↔ ((𝜑 ∧ (1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐷 ∈ V)))
48 offval22.d . . . . . . . 8 ((𝜑𝑥𝐴𝑦𝐵) → 𝐷𝑌)
4948elexd 3520 . . . . . . 7 ((𝜑𝑥𝐴𝑦𝐵) → 𝐷 ∈ V)
509, 10, 11, 38, 41, 44, 47, 49vtocl2gf 3575 . . . . . 6 (((2nd𝑧) ∈ V ∧ (1st𝑧) ∈ V) → ((𝜑 ∧ (1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐷 ∈ V))
517, 8, 50mp2an 688 . . . . 5 ((𝜑 ∧ (1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐷 ∈ V)
52513expb 1114 . . . 4 ((𝜑 ∧ ((1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵)) → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐷 ∈ V)
536, 52sylan2 592 . . 3 ((𝜑𝑧 ∈ (𝐴 × 𝐵)) → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐷 ∈ V)
54 offval22.f . . . 4 (𝜑𝐹 = (𝑥𝐴, 𝑦𝐵𝐶))
55 mpompts 7759 . . . 4 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧 ∈ (𝐴 × 𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶)
5654, 55syl6eq 2877 . . 3 (𝜑𝐹 = (𝑧 ∈ (𝐴 × 𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶))
57 offval22.g . . . 4 (𝜑𝐺 = (𝑥𝐴, 𝑦𝐵𝐷))
58 mpompts 7759 . . . 4 (𝑥𝐴, 𝑦𝐵𝐷) = (𝑧 ∈ (𝐴 × 𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐷)
5957, 58syl6eq 2877 . . 3 (𝜑𝐺 = (𝑧 ∈ (𝐴 × 𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐷))
603, 35, 53, 56, 59offval2 7420 . 2 (𝜑 → (𝐹f 𝑅𝐺) = (𝑧 ∈ (𝐴 × 𝐵) ↦ ((1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶𝑅(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐷)))
61 csbov12g 7194 . . . . . . 7 ((2nd𝑧) ∈ V → (2nd𝑧) / 𝑦(𝐶𝑅𝐷) = ((2nd𝑧) / 𝑦𝐶𝑅(2nd𝑧) / 𝑦𝐷))
6261csbeq2dv 3894 . . . . . 6 ((2nd𝑧) ∈ V → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦(𝐶𝑅𝐷) = (1st𝑧) / 𝑥((2nd𝑧) / 𝑦𝐶𝑅(2nd𝑧) / 𝑦𝐷))
637, 62ax-mp 5 . . . . 5 (1st𝑧) / 𝑥(2nd𝑧) / 𝑦(𝐶𝑅𝐷) = (1st𝑧) / 𝑥((2nd𝑧) / 𝑦𝐶𝑅(2nd𝑧) / 𝑦𝐷)
64 csbov12g 7194 . . . . . 6 ((1st𝑧) ∈ V → (1st𝑧) / 𝑥((2nd𝑧) / 𝑦𝐶𝑅(2nd𝑧) / 𝑦𝐷) = ((1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶𝑅(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐷))
658, 64ax-mp 5 . . . . 5 (1st𝑧) / 𝑥((2nd𝑧) / 𝑦𝐶𝑅(2nd𝑧) / 𝑦𝐷) = ((1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶𝑅(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐷)
6663, 65eqtr2i 2850 . . . 4 ((1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶𝑅(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐷) = (1st𝑧) / 𝑥(2nd𝑧) / 𝑦(𝐶𝑅𝐷)
6766mpteq2i 5155 . . 3 (𝑧 ∈ (𝐴 × 𝐵) ↦ ((1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶𝑅(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐷)) = (𝑧 ∈ (𝐴 × 𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦(𝐶𝑅𝐷))
68 mpompts 7759 . . 3 (𝑥𝐴, 𝑦𝐵 ↦ (𝐶𝑅𝐷)) = (𝑧 ∈ (𝐴 × 𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦(𝐶𝑅𝐷))
6967, 68eqtr4i 2852 . 2 (𝑧 ∈ (𝐴 × 𝐵) ↦ ((1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶𝑅(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐷)) = (𝑥𝐴, 𝑦𝐵 ↦ (𝐶𝑅𝐷))
7060, 69syl6eq 2877 1 (𝜑 → (𝐹f 𝑅𝐺) = (𝑥𝐴, 𝑦𝐵 ↦ (𝐶𝑅𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1081   = wceq 1530  wcel 2107  Vcvv 3500  csb 3887  cmpt 5143   × cxp 5552  cfv 6354  (class class class)co 7150  cmpo 7152  f cof 7401  1st c1st 7683  2nd c2nd 7684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-1st 7685  df-2nd 7686
This theorem is referenced by:  matsc  20994  mdetrsca2  21148  mdetrlin2  21151  mdetunilem5  21160  smadiadetglem2  21216  mat2pmatghm  21273  pm2mpghm  21359  fedgmullem1  30930  fedgmullem2  30931
  Copyright terms: Public domain W3C validator