MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  offval22 Structured version   Visualization version   GIF version

Theorem offval22 7766
Description: The function operation expressed as a mapping, variation of offval2 7406. (Contributed by SO, 15-Jul-2018.)
Hypotheses
Ref Expression
offval22.a (𝜑𝐴𝑉)
offval22.b (𝜑𝐵𝑊)
offval22.c ((𝜑𝑥𝐴𝑦𝐵) → 𝐶𝑋)
offval22.d ((𝜑𝑥𝐴𝑦𝐵) → 𝐷𝑌)
offval22.f (𝜑𝐹 = (𝑥𝐴, 𝑦𝐵𝐶))
offval22.g (𝜑𝐺 = (𝑥𝐴, 𝑦𝐵𝐷))
Assertion
Ref Expression
offval22 (𝜑 → (𝐹f 𝑅𝐺) = (𝑥𝐴, 𝑦𝐵 ↦ (𝐶𝑅𝐷)))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem offval22
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 offval22.a . . . 4 (𝜑𝐴𝑉)
2 offval22.b . . . 4 (𝜑𝐵𝑊)
31, 2xpexd 7454 . . 3 (𝜑 → (𝐴 × 𝐵) ∈ V)
4 xp1st 7703 . . . . 5 (𝑧 ∈ (𝐴 × 𝐵) → (1st𝑧) ∈ 𝐴)
5 xp2nd 7704 . . . . 5 (𝑧 ∈ (𝐴 × 𝐵) → (2nd𝑧) ∈ 𝐵)
64, 5jca 515 . . . 4 (𝑧 ∈ (𝐴 × 𝐵) → ((1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵))
7 fvex 6658 . . . . . 6 (2nd𝑧) ∈ V
8 fvex 6658 . . . . . 6 (1st𝑧) ∈ V
9 nfcv 2955 . . . . . . 7 𝑦(2nd𝑧)
10 nfcv 2955 . . . . . . 7 𝑥(2nd𝑧)
11 nfcv 2955 . . . . . . 7 𝑥(1st𝑧)
12 nfv 1915 . . . . . . . 8 𝑦(𝜑𝑥𝐴 ∧ (2nd𝑧) ∈ 𝐵)
13 nfcsb1v 3852 . . . . . . . . 9 𝑦(2nd𝑧) / 𝑦𝐶
1413nfel1 2971 . . . . . . . 8 𝑦(2nd𝑧) / 𝑦𝐶 ∈ V
1512, 14nfim 1897 . . . . . . 7 𝑦((𝜑𝑥𝐴 ∧ (2nd𝑧) ∈ 𝐵) → (2nd𝑧) / 𝑦𝐶 ∈ V)
16 nfv 1915 . . . . . . . 8 𝑥(𝜑 ∧ (1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵)
17 nfcsb1v 3852 . . . . . . . . 9 𝑥(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶
1817nfel1 2971 . . . . . . . 8 𝑥(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 ∈ V
1916, 18nfim 1897 . . . . . . 7 𝑥((𝜑 ∧ (1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 ∈ V)
20 eleq1 2877 . . . . . . . . 9 (𝑦 = (2nd𝑧) → (𝑦𝐵 ↔ (2nd𝑧) ∈ 𝐵))
21203anbi3d 1439 . . . . . . . 8 (𝑦 = (2nd𝑧) → ((𝜑𝑥𝐴𝑦𝐵) ↔ (𝜑𝑥𝐴 ∧ (2nd𝑧) ∈ 𝐵)))
22 csbeq1a 3842 . . . . . . . . 9 (𝑦 = (2nd𝑧) → 𝐶 = (2nd𝑧) / 𝑦𝐶)
2322eleq1d 2874 . . . . . . . 8 (𝑦 = (2nd𝑧) → (𝐶 ∈ V ↔ (2nd𝑧) / 𝑦𝐶 ∈ V))
2421, 23imbi12d 348 . . . . . . 7 (𝑦 = (2nd𝑧) → (((𝜑𝑥𝐴𝑦𝐵) → 𝐶 ∈ V) ↔ ((𝜑𝑥𝐴 ∧ (2nd𝑧) ∈ 𝐵) → (2nd𝑧) / 𝑦𝐶 ∈ V)))
25 eleq1 2877 . . . . . . . . 9 (𝑥 = (1st𝑧) → (𝑥𝐴 ↔ (1st𝑧) ∈ 𝐴))
26253anbi2d 1438 . . . . . . . 8 (𝑥 = (1st𝑧) → ((𝜑𝑥𝐴 ∧ (2nd𝑧) ∈ 𝐵) ↔ (𝜑 ∧ (1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵)))
27 csbeq1a 3842 . . . . . . . . 9 (𝑥 = (1st𝑧) → (2nd𝑧) / 𝑦𝐶 = (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶)
2827eleq1d 2874 . . . . . . . 8 (𝑥 = (1st𝑧) → ((2nd𝑧) / 𝑦𝐶 ∈ V ↔ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 ∈ V))
2926, 28imbi12d 348 . . . . . . 7 (𝑥 = (1st𝑧) → (((𝜑𝑥𝐴 ∧ (2nd𝑧) ∈ 𝐵) → (2nd𝑧) / 𝑦𝐶 ∈ V) ↔ ((𝜑 ∧ (1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 ∈ V)))
30 offval22.c . . . . . . . 8 ((𝜑𝑥𝐴𝑦𝐵) → 𝐶𝑋)
3130elexd 3461 . . . . . . 7 ((𝜑𝑥𝐴𝑦𝐵) → 𝐶 ∈ V)
329, 10, 11, 15, 19, 24, 29, 31vtocl2gf 3518 . . . . . 6 (((2nd𝑧) ∈ V ∧ (1st𝑧) ∈ V) → ((𝜑 ∧ (1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 ∈ V))
337, 8, 32mp2an 691 . . . . 5 ((𝜑 ∧ (1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 ∈ V)
34333expb 1117 . . . 4 ((𝜑 ∧ ((1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵)) → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 ∈ V)
356, 34sylan2 595 . . 3 ((𝜑𝑧 ∈ (𝐴 × 𝐵)) → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 ∈ V)
36 nfcsb1v 3852 . . . . . . . . 9 𝑦(2nd𝑧) / 𝑦𝐷
3736nfel1 2971 . . . . . . . 8 𝑦(2nd𝑧) / 𝑦𝐷 ∈ V
3812, 37nfim 1897 . . . . . . 7 𝑦((𝜑𝑥𝐴 ∧ (2nd𝑧) ∈ 𝐵) → (2nd𝑧) / 𝑦𝐷 ∈ V)
39 nfcsb1v 3852 . . . . . . . . 9 𝑥(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐷
4039nfel1 2971 . . . . . . . 8 𝑥(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐷 ∈ V
4116, 40nfim 1897 . . . . . . 7 𝑥((𝜑 ∧ (1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐷 ∈ V)
42 csbeq1a 3842 . . . . . . . . 9 (𝑦 = (2nd𝑧) → 𝐷 = (2nd𝑧) / 𝑦𝐷)
4342eleq1d 2874 . . . . . . . 8 (𝑦 = (2nd𝑧) → (𝐷 ∈ V ↔ (2nd𝑧) / 𝑦𝐷 ∈ V))
4421, 43imbi12d 348 . . . . . . 7 (𝑦 = (2nd𝑧) → (((𝜑𝑥𝐴𝑦𝐵) → 𝐷 ∈ V) ↔ ((𝜑𝑥𝐴 ∧ (2nd𝑧) ∈ 𝐵) → (2nd𝑧) / 𝑦𝐷 ∈ V)))
45 csbeq1a 3842 . . . . . . . . 9 (𝑥 = (1st𝑧) → (2nd𝑧) / 𝑦𝐷 = (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐷)
4645eleq1d 2874 . . . . . . . 8 (𝑥 = (1st𝑧) → ((2nd𝑧) / 𝑦𝐷 ∈ V ↔ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐷 ∈ V))
4726, 46imbi12d 348 . . . . . . 7 (𝑥 = (1st𝑧) → (((𝜑𝑥𝐴 ∧ (2nd𝑧) ∈ 𝐵) → (2nd𝑧) / 𝑦𝐷 ∈ V) ↔ ((𝜑 ∧ (1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐷 ∈ V)))
48 offval22.d . . . . . . . 8 ((𝜑𝑥𝐴𝑦𝐵) → 𝐷𝑌)
4948elexd 3461 . . . . . . 7 ((𝜑𝑥𝐴𝑦𝐵) → 𝐷 ∈ V)
509, 10, 11, 38, 41, 44, 47, 49vtocl2gf 3518 . . . . . 6 (((2nd𝑧) ∈ V ∧ (1st𝑧) ∈ V) → ((𝜑 ∧ (1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐷 ∈ V))
517, 8, 50mp2an 691 . . . . 5 ((𝜑 ∧ (1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵) → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐷 ∈ V)
52513expb 1117 . . . 4 ((𝜑 ∧ ((1st𝑧) ∈ 𝐴 ∧ (2nd𝑧) ∈ 𝐵)) → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐷 ∈ V)
536, 52sylan2 595 . . 3 ((𝜑𝑧 ∈ (𝐴 × 𝐵)) → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐷 ∈ V)
54 offval22.f . . . 4 (𝜑𝐹 = (𝑥𝐴, 𝑦𝐵𝐶))
55 mpompts 7745 . . . 4 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧 ∈ (𝐴 × 𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶)
5654, 55eqtrdi 2849 . . 3 (𝜑𝐹 = (𝑧 ∈ (𝐴 × 𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶))
57 offval22.g . . . 4 (𝜑𝐺 = (𝑥𝐴, 𝑦𝐵𝐷))
58 mpompts 7745 . . . 4 (𝑥𝐴, 𝑦𝐵𝐷) = (𝑧 ∈ (𝐴 × 𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐷)
5957, 58eqtrdi 2849 . . 3 (𝜑𝐺 = (𝑧 ∈ (𝐴 × 𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐷))
603, 35, 53, 56, 59offval2 7406 . 2 (𝜑 → (𝐹f 𝑅𝐺) = (𝑧 ∈ (𝐴 × 𝐵) ↦ ((1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶𝑅(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐷)))
61 csbov12g 7179 . . . . . . 7 ((2nd𝑧) ∈ V → (2nd𝑧) / 𝑦(𝐶𝑅𝐷) = ((2nd𝑧) / 𝑦𝐶𝑅(2nd𝑧) / 𝑦𝐷))
6261csbeq2dv 3835 . . . . . 6 ((2nd𝑧) ∈ V → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦(𝐶𝑅𝐷) = (1st𝑧) / 𝑥((2nd𝑧) / 𝑦𝐶𝑅(2nd𝑧) / 𝑦𝐷))
637, 62ax-mp 5 . . . . 5 (1st𝑧) / 𝑥(2nd𝑧) / 𝑦(𝐶𝑅𝐷) = (1st𝑧) / 𝑥((2nd𝑧) / 𝑦𝐶𝑅(2nd𝑧) / 𝑦𝐷)
64 csbov12g 7179 . . . . . 6 ((1st𝑧) ∈ V → (1st𝑧) / 𝑥((2nd𝑧) / 𝑦𝐶𝑅(2nd𝑧) / 𝑦𝐷) = ((1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶𝑅(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐷))
658, 64ax-mp 5 . . . . 5 (1st𝑧) / 𝑥((2nd𝑧) / 𝑦𝐶𝑅(2nd𝑧) / 𝑦𝐷) = ((1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶𝑅(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐷)
6663, 65eqtr2i 2822 . . . 4 ((1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶𝑅(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐷) = (1st𝑧) / 𝑥(2nd𝑧) / 𝑦(𝐶𝑅𝐷)
6766mpteq2i 5122 . . 3 (𝑧 ∈ (𝐴 × 𝐵) ↦ ((1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶𝑅(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐷)) = (𝑧 ∈ (𝐴 × 𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦(𝐶𝑅𝐷))
68 mpompts 7745 . . 3 (𝑥𝐴, 𝑦𝐵 ↦ (𝐶𝑅𝐷)) = (𝑧 ∈ (𝐴 × 𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦(𝐶𝑅𝐷))
6967, 68eqtr4i 2824 . 2 (𝑧 ∈ (𝐴 × 𝐵) ↦ ((1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶𝑅(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐷)) = (𝑥𝐴, 𝑦𝐵 ↦ (𝐶𝑅𝐷))
7060, 69eqtrdi 2849 1 (𝜑 → (𝐹f 𝑅𝐺) = (𝑥𝐴, 𝑦𝐵 ↦ (𝐶𝑅𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  Vcvv 3441  csb 3828  cmpt 5110   × cxp 5517  cfv 6324  (class class class)co 7135  cmpo 7137  f cof 7387  1st c1st 7669  2nd c2nd 7670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-1st 7671  df-2nd 7672
This theorem is referenced by:  matsc  21055  mdetrsca2  21209  mdetrlin2  21212  mdetunilem5  21221  smadiadetglem2  21277  mat2pmatghm  21335  pm2mpghm  21421  fedgmullem1  31113  fedgmullem2  31114
  Copyright terms: Public domain W3C validator