Step | Hyp | Ref
| Expression |
1 | | ovex 7288 |
. . . . . . . 8
⊢
(1...𝑀) ∈
V |
2 | 1 | mptex 7081 |
. . . . . . 7
⊢ (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡)) ∈ V |
3 | | fmuldfeqlem1.6 |
. . . . . . . 8
⊢ 𝐹 = (𝑡 ∈ 𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))) |
4 | 3 | fvmpt2 6868 |
. . . . . . 7
⊢ ((𝑡 ∈ 𝑇 ∧ (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡)) ∈ V) → (𝐹‘𝑡) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))) |
5 | 2, 4 | mpan2 687 |
. . . . . 6
⊢ (𝑡 ∈ 𝑇 → (𝐹‘𝑡) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))) |
6 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑖 = 𝑗 → (𝑈‘𝑖) = (𝑈‘𝑗)) |
7 | 6 | fveq1d 6758 |
. . . . . . 7
⊢ (𝑖 = 𝑗 → ((𝑈‘𝑖)‘𝑡) = ((𝑈‘𝑗)‘𝑡)) |
8 | 7 | cbvmptv 5183 |
. . . . . 6
⊢ (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡)) = (𝑗 ∈ (1...𝑀) ↦ ((𝑈‘𝑗)‘𝑡)) |
9 | 5, 8 | eqtrdi 2795 |
. . . . 5
⊢ (𝑡 ∈ 𝑇 → (𝐹‘𝑡) = (𝑗 ∈ (1...𝑀) ↦ ((𝑈‘𝑗)‘𝑡))) |
10 | 9 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑡) = (𝑗 ∈ (1...𝑀) ↦ ((𝑈‘𝑗)‘𝑡))) |
11 | | fveq2 6756 |
. . . . . 6
⊢ (𝑗 = (𝑁 + 1) → (𝑈‘𝑗) = (𝑈‘(𝑁 + 1))) |
12 | 11 | fveq1d 6758 |
. . . . 5
⊢ (𝑗 = (𝑁 + 1) → ((𝑈‘𝑗)‘𝑡) = ((𝑈‘(𝑁 + 1))‘𝑡)) |
13 | 12 | adantl 481 |
. . . 4
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑗 = (𝑁 + 1)) → ((𝑈‘𝑗)‘𝑡) = ((𝑈‘(𝑁 + 1))‘𝑡)) |
14 | | fmuldfeqlem1.11 |
. . . . 5
⊢ (𝜑 → (𝑁 + 1) ∈ (1...𝑀)) |
15 | 14 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝑁 + 1) ∈ (1...𝑀)) |
16 | | fmuldfeqlem1.8 |
. . . . . . 7
⊢ (𝜑 → 𝑈:(1...𝑀)⟶𝑌) |
17 | 16, 14 | ffvelrnd 6944 |
. . . . . 6
⊢ (𝜑 → (𝑈‘(𝑁 + 1)) ∈ 𝑌) |
18 | 17 | ancli 548 |
. . . . . 6
⊢ (𝜑 → (𝜑 ∧ (𝑈‘(𝑁 + 1)) ∈ 𝑌)) |
19 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑓(𝑈‘(𝑁 + 1)) |
20 | | fmuldfeqlem1.1 |
. . . . . . . . 9
⊢
Ⅎ𝑓𝜑 |
21 | | nfv 1918 |
. . . . . . . . 9
⊢
Ⅎ𝑓(𝑈‘(𝑁 + 1)) ∈ 𝑌 |
22 | 20, 21 | nfan 1903 |
. . . . . . . 8
⊢
Ⅎ𝑓(𝜑 ∧ (𝑈‘(𝑁 + 1)) ∈ 𝑌) |
23 | | nfv 1918 |
. . . . . . . 8
⊢
Ⅎ𝑓(𝑈‘(𝑁 + 1)):𝑇⟶ℝ |
24 | 22, 23 | nfim 1900 |
. . . . . . 7
⊢
Ⅎ𝑓((𝜑 ∧ (𝑈‘(𝑁 + 1)) ∈ 𝑌) → (𝑈‘(𝑁 + 1)):𝑇⟶ℝ) |
25 | | eleq1 2826 |
. . . . . . . . 9
⊢ (𝑓 = (𝑈‘(𝑁 + 1)) → (𝑓 ∈ 𝑌 ↔ (𝑈‘(𝑁 + 1)) ∈ 𝑌)) |
26 | 25 | anbi2d 628 |
. . . . . . . 8
⊢ (𝑓 = (𝑈‘(𝑁 + 1)) → ((𝜑 ∧ 𝑓 ∈ 𝑌) ↔ (𝜑 ∧ (𝑈‘(𝑁 + 1)) ∈ 𝑌))) |
27 | | feq1 6565 |
. . . . . . . 8
⊢ (𝑓 = (𝑈‘(𝑁 + 1)) → (𝑓:𝑇⟶ℝ ↔ (𝑈‘(𝑁 + 1)):𝑇⟶ℝ)) |
28 | 26, 27 | imbi12d 344 |
. . . . . . 7
⊢ (𝑓 = (𝑈‘(𝑁 + 1)) → (((𝜑 ∧ 𝑓 ∈ 𝑌) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝑈‘(𝑁 + 1)) ∈ 𝑌) → (𝑈‘(𝑁 + 1)):𝑇⟶ℝ))) |
29 | | fmuldfeqlem1.13 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑌) → 𝑓:𝑇⟶ℝ) |
30 | 19, 24, 28, 29 | vtoclgf 3493 |
. . . . . 6
⊢ ((𝑈‘(𝑁 + 1)) ∈ 𝑌 → ((𝜑 ∧ (𝑈‘(𝑁 + 1)) ∈ 𝑌) → (𝑈‘(𝑁 + 1)):𝑇⟶ℝ)) |
31 | 17, 18, 30 | sylc 65 |
. . . . 5
⊢ (𝜑 → (𝑈‘(𝑁 + 1)):𝑇⟶ℝ) |
32 | 31 | ffvelrnda 6943 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝑈‘(𝑁 + 1))‘𝑡) ∈ ℝ) |
33 | 10, 13, 15, 32 | fvmptd 6864 |
. . 3
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝐹‘𝑡)‘(𝑁 + 1)) = ((𝑈‘(𝑁 + 1))‘𝑡)) |
34 | 33 | oveq2d 7271 |
. 2
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((seq1( · , (𝐹‘𝑡))‘𝑁) · ((𝐹‘𝑡)‘(𝑁 + 1))) = ((seq1( · , (𝐹‘𝑡))‘𝑁) · ((𝑈‘(𝑁 + 1))‘𝑡))) |
35 | | fmuldfeqlem1.10 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ (1...𝑀)) |
36 | | elfzuz 13181 |
. . . . 5
⊢ (𝑁 ∈ (1...𝑀) → 𝑁 ∈
(ℤ≥‘1)) |
37 | 35, 36 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘1)) |
38 | | seqp1 13664 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘1) → (seq1( · , (𝐹‘𝑡))‘(𝑁 + 1)) = ((seq1( · , (𝐹‘𝑡))‘𝑁) · ((𝐹‘𝑡)‘(𝑁 + 1)))) |
39 | 37, 38 | syl 17 |
. . 3
⊢ (𝜑 → (seq1( · , (𝐹‘𝑡))‘(𝑁 + 1)) = ((seq1( · , (𝐹‘𝑡))‘𝑁) · ((𝐹‘𝑡)‘(𝑁 + 1)))) |
40 | 39 | adantr 480 |
. 2
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (seq1( · , (𝐹‘𝑡))‘(𝑁 + 1)) = ((seq1( · , (𝐹‘𝑡))‘𝑁) · ((𝐹‘𝑡)‘(𝑁 + 1)))) |
41 | | seqp1 13664 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘1) → (seq1(𝑃, 𝑈)‘(𝑁 + 1)) = ((seq1(𝑃, 𝑈)‘𝑁)𝑃(𝑈‘(𝑁 + 1)))) |
42 | 37, 41 | syl 17 |
. . . . 5
⊢ (𝜑 → (seq1(𝑃, 𝑈)‘(𝑁 + 1)) = ((seq1(𝑃, 𝑈)‘𝑁)𝑃(𝑈‘(𝑁 + 1)))) |
43 | | fmuldfeqlem1.5 |
. . . . . . . 8
⊢ 𝑃 = (𝑓 ∈ 𝑌, 𝑔 ∈ 𝑌 ↦ (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡)))) |
44 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎℎ(𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) |
45 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑙(𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) |
46 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑓(𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) · (𝑙‘𝑡))) |
47 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑔(𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) · (𝑙‘𝑡))) |
48 | | fveq1 6755 |
. . . . . . . . . . 11
⊢ (𝑓 = ℎ → (𝑓‘𝑡) = (ℎ‘𝑡)) |
49 | | fveq1 6755 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑙 → (𝑔‘𝑡) = (𝑙‘𝑡)) |
50 | 48, 49 | oveqan12d 7274 |
. . . . . . . . . 10
⊢ ((𝑓 = ℎ ∧ 𝑔 = 𝑙) → ((𝑓‘𝑡) · (𝑔‘𝑡)) = ((ℎ‘𝑡) · (𝑙‘𝑡))) |
51 | 50 | mpteq2dv 5172 |
. . . . . . . . 9
⊢ ((𝑓 = ℎ ∧ 𝑔 = 𝑙) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) = (𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) · (𝑙‘𝑡)))) |
52 | 44, 45, 46, 47, 51 | cbvmpo 7347 |
. . . . . . . 8
⊢ (𝑓 ∈ 𝑌, 𝑔 ∈ 𝑌 ↦ (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡)))) = (ℎ ∈ 𝑌, 𝑙 ∈ 𝑌 ↦ (𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) · (𝑙‘𝑡)))) |
53 | 43, 52 | eqtri 2766 |
. . . . . . 7
⊢ 𝑃 = (ℎ ∈ 𝑌, 𝑙 ∈ 𝑌 ↦ (𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) · (𝑙‘𝑡)))) |
54 | 53 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝑃 = (ℎ ∈ 𝑌, 𝑙 ∈ 𝑌 ↦ (𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) · (𝑙‘𝑡))))) |
55 | | nfcv 2906 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑡1 |
56 | | fmuldfeqlem1.3 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑡𝑌 |
57 | | nfmpt1 5178 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑡(𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) |
58 | 56, 56, 57 | nfmpo 7335 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑡(𝑓 ∈ 𝑌, 𝑔 ∈ 𝑌 ↦ (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡)))) |
59 | 43, 58 | nfcxfr 2904 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑡𝑃 |
60 | | nfcv 2906 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑡𝑈 |
61 | 55, 59, 60 | nfseq 13659 |
. . . . . . . . . . 11
⊢
Ⅎ𝑡seq1(𝑃, 𝑈) |
62 | | nfcv 2906 |
. . . . . . . . . . 11
⊢
Ⅎ𝑡𝑁 |
63 | 61, 62 | nffv 6766 |
. . . . . . . . . 10
⊢
Ⅎ𝑡(seq1(𝑃, 𝑈)‘𝑁) |
64 | 63 | nfeq2 2923 |
. . . . . . . . 9
⊢
Ⅎ𝑡 ℎ = (seq1(𝑃, 𝑈)‘𝑁) |
65 | | nfv 1918 |
. . . . . . . . 9
⊢
Ⅎ𝑡 𝑙 = (𝑈‘(𝑁 + 1)) |
66 | 64, 65 | nfan 1903 |
. . . . . . . 8
⊢
Ⅎ𝑡(ℎ = (seq1(𝑃, 𝑈)‘𝑁) ∧ 𝑙 = (𝑈‘(𝑁 + 1))) |
67 | | fveq1 6755 |
. . . . . . . . . 10
⊢ (ℎ = (seq1(𝑃, 𝑈)‘𝑁) → (ℎ‘𝑡) = ((seq1(𝑃, 𝑈)‘𝑁)‘𝑡)) |
68 | 67 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((ℎ = (seq1(𝑃, 𝑈)‘𝑁) ∧ 𝑙 = (𝑈‘(𝑁 + 1))) ∧ 𝑡 ∈ 𝑇) → (ℎ‘𝑡) = ((seq1(𝑃, 𝑈)‘𝑁)‘𝑡)) |
69 | | fveq1 6755 |
. . . . . . . . . 10
⊢ (𝑙 = (𝑈‘(𝑁 + 1)) → (𝑙‘𝑡) = ((𝑈‘(𝑁 + 1))‘𝑡)) |
70 | 69 | ad2antlr 723 |
. . . . . . . . 9
⊢ (((ℎ = (seq1(𝑃, 𝑈)‘𝑁) ∧ 𝑙 = (𝑈‘(𝑁 + 1))) ∧ 𝑡 ∈ 𝑇) → (𝑙‘𝑡) = ((𝑈‘(𝑁 + 1))‘𝑡)) |
71 | 68, 70 | oveq12d 7273 |
. . . . . . . 8
⊢ (((ℎ = (seq1(𝑃, 𝑈)‘𝑁) ∧ 𝑙 = (𝑈‘(𝑁 + 1))) ∧ 𝑡 ∈ 𝑇) → ((ℎ‘𝑡) · (𝑙‘𝑡)) = (((seq1(𝑃, 𝑈)‘𝑁)‘𝑡) · ((𝑈‘(𝑁 + 1))‘𝑡))) |
72 | 66, 71 | mpteq2da 5168 |
. . . . . . 7
⊢ ((ℎ = (seq1(𝑃, 𝑈)‘𝑁) ∧ 𝑙 = (𝑈‘(𝑁 + 1))) → (𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) · (𝑙‘𝑡))) = (𝑡 ∈ 𝑇 ↦ (((seq1(𝑃, 𝑈)‘𝑁)‘𝑡) · ((𝑈‘(𝑁 + 1))‘𝑡)))) |
73 | 72 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ (ℎ = (seq1(𝑃, 𝑈)‘𝑁) ∧ 𝑙 = (𝑈‘(𝑁 + 1)))) → (𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) · (𝑙‘𝑡))) = (𝑡 ∈ 𝑇 ↦ (((seq1(𝑃, 𝑈)‘𝑁)‘𝑡) · ((𝑈‘(𝑁 + 1))‘𝑡)))) |
74 | | eqid 2738 |
. . . . . . 7
⊢
(seq1(𝑃, 𝑈)‘𝑁) = (seq1(𝑃, 𝑈)‘𝑁) |
75 | | 3simpc 1148 |
. . . . . . . 8
⊢ ((𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌) → (ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌)) |
76 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑓ℎ |
77 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑔ℎ |
78 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑔𝑙 |
79 | | nfv 1918 |
. . . . . . . . . . 11
⊢
Ⅎ𝑓 ℎ ∈ 𝑌 |
80 | | nfv 1918 |
. . . . . . . . . . 11
⊢
Ⅎ𝑓 𝑔 ∈ 𝑌 |
81 | 20, 79, 80 | nf3an 1905 |
. . . . . . . . . 10
⊢
Ⅎ𝑓(𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑔 ∈ 𝑌) |
82 | | nfv 1918 |
. . . . . . . . . 10
⊢
Ⅎ𝑓(𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) · (𝑔‘𝑡))) ∈ 𝑌 |
83 | 81, 82 | nfim 1900 |
. . . . . . . . 9
⊢
Ⅎ𝑓((𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑔 ∈ 𝑌) → (𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) · (𝑔‘𝑡))) ∈ 𝑌) |
84 | | fmuldfeqlem1.2 |
. . . . . . . . . . 11
⊢
Ⅎ𝑔𝜑 |
85 | | nfv 1918 |
. . . . . . . . . . 11
⊢
Ⅎ𝑔 ℎ ∈ 𝑌 |
86 | | nfv 1918 |
. . . . . . . . . . 11
⊢
Ⅎ𝑔 𝑙 ∈ 𝑌 |
87 | 84, 85, 86 | nf3an 1905 |
. . . . . . . . . 10
⊢
Ⅎ𝑔(𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌) |
88 | | nfv 1918 |
. . . . . . . . . 10
⊢
Ⅎ𝑔(𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) · (𝑙‘𝑡))) ∈ 𝑌 |
89 | 87, 88 | nfim 1900 |
. . . . . . . . 9
⊢
Ⅎ𝑔((𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌) → (𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) · (𝑙‘𝑡))) ∈ 𝑌) |
90 | | eleq1 2826 |
. . . . . . . . . . 11
⊢ (𝑓 = ℎ → (𝑓 ∈ 𝑌 ↔ ℎ ∈ 𝑌)) |
91 | 90 | 3anbi2d 1439 |
. . . . . . . . . 10
⊢ (𝑓 = ℎ → ((𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌) ↔ (𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑔 ∈ 𝑌))) |
92 | 48 | oveq1d 7270 |
. . . . . . . . . . . 12
⊢ (𝑓 = ℎ → ((𝑓‘𝑡) · (𝑔‘𝑡)) = ((ℎ‘𝑡) · (𝑔‘𝑡))) |
93 | 92 | mpteq2dv 5172 |
. . . . . . . . . . 11
⊢ (𝑓 = ℎ → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) = (𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) · (𝑔‘𝑡)))) |
94 | 93 | eleq1d 2823 |
. . . . . . . . . 10
⊢ (𝑓 = ℎ → ((𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝑌 ↔ (𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) · (𝑔‘𝑡))) ∈ 𝑌)) |
95 | 91, 94 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑓 = ℎ → (((𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝑌) ↔ ((𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑔 ∈ 𝑌) → (𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) · (𝑔‘𝑡))) ∈ 𝑌))) |
96 | | eleq1 2826 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑙 → (𝑔 ∈ 𝑌 ↔ 𝑙 ∈ 𝑌)) |
97 | 96 | 3anbi3d 1440 |
. . . . . . . . . 10
⊢ (𝑔 = 𝑙 → ((𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑔 ∈ 𝑌) ↔ (𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌))) |
98 | 49 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑙 → ((ℎ‘𝑡) · (𝑔‘𝑡)) = ((ℎ‘𝑡) · (𝑙‘𝑡))) |
99 | 98 | mpteq2dv 5172 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑙 → (𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) · (𝑔‘𝑡))) = (𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) · (𝑙‘𝑡)))) |
100 | 99 | eleq1d 2823 |
. . . . . . . . . 10
⊢ (𝑔 = 𝑙 → ((𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) · (𝑔‘𝑡))) ∈ 𝑌 ↔ (𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) · (𝑙‘𝑡))) ∈ 𝑌)) |
101 | 97, 100 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑔 = 𝑙 → (((𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑔 ∈ 𝑌) → (𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) · (𝑔‘𝑡))) ∈ 𝑌) ↔ ((𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌) → (𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) · (𝑙‘𝑡))) ∈ 𝑌))) |
102 | | fmuldfeqlem1.9 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝑌) |
103 | 76, 77, 78, 83, 89, 95, 101, 102 | vtocl2gf 3498 |
. . . . . . . 8
⊢ ((ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌) → ((𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌) → (𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) · (𝑙‘𝑡))) ∈ 𝑌)) |
104 | 75, 103 | mpcom 38 |
. . . . . . 7
⊢ ((𝜑 ∧ ℎ ∈ 𝑌 ∧ 𝑙 ∈ 𝑌) → (𝑡 ∈ 𝑇 ↦ ((ℎ‘𝑡) · (𝑙‘𝑡))) ∈ 𝑌) |
105 | | fmuldfeqlem1.7 |
. . . . . . 7
⊢ (𝜑 → 𝑇 ∈ V) |
106 | 53, 74, 35, 16, 104, 105 | fmulcl 43012 |
. . . . . 6
⊢ (𝜑 → (seq1(𝑃, 𝑈)‘𝑁) ∈ 𝑌) |
107 | | mptexg 7079 |
. . . . . . 7
⊢ (𝑇 ∈ V → (𝑡 ∈ 𝑇 ↦ (((seq1(𝑃, 𝑈)‘𝑁)‘𝑡) · ((𝑈‘(𝑁 + 1))‘𝑡))) ∈ V) |
108 | 105, 107 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ (((seq1(𝑃, 𝑈)‘𝑁)‘𝑡) · ((𝑈‘(𝑁 + 1))‘𝑡))) ∈ V) |
109 | 54, 73, 106, 17, 108 | ovmpod 7403 |
. . . . 5
⊢ (𝜑 → ((seq1(𝑃, 𝑈)‘𝑁)𝑃(𝑈‘(𝑁 + 1))) = (𝑡 ∈ 𝑇 ↦ (((seq1(𝑃, 𝑈)‘𝑁)‘𝑡) · ((𝑈‘(𝑁 + 1))‘𝑡)))) |
110 | 42, 109 | eqtrd 2778 |
. . . 4
⊢ (𝜑 → (seq1(𝑃, 𝑈)‘(𝑁 + 1)) = (𝑡 ∈ 𝑇 ↦ (((seq1(𝑃, 𝑈)‘𝑁)‘𝑡) · ((𝑈‘(𝑁 + 1))‘𝑡)))) |
111 | 106 | ancli 548 |
. . . . . . 7
⊢ (𝜑 → (𝜑 ∧ (seq1(𝑃, 𝑈)‘𝑁) ∈ 𝑌)) |
112 | | nfcv 2906 |
. . . . . . . . . 10
⊢
Ⅎ𝑓1 |
113 | | nfmpo1 7333 |
. . . . . . . . . . 11
⊢
Ⅎ𝑓(𝑓 ∈ 𝑌, 𝑔 ∈ 𝑌 ↦ (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡)))) |
114 | 43, 113 | nfcxfr 2904 |
. . . . . . . . . 10
⊢
Ⅎ𝑓𝑃 |
115 | | nfcv 2906 |
. . . . . . . . . 10
⊢
Ⅎ𝑓𝑈 |
116 | 112, 114,
115 | nfseq 13659 |
. . . . . . . . 9
⊢
Ⅎ𝑓seq1(𝑃, 𝑈) |
117 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑓𝑁 |
118 | 116, 117 | nffv 6766 |
. . . . . . . 8
⊢
Ⅎ𝑓(seq1(𝑃, 𝑈)‘𝑁) |
119 | 118 | nfel1 2922 |
. . . . . . . . . 10
⊢
Ⅎ𝑓(seq1(𝑃, 𝑈)‘𝑁) ∈ 𝑌 |
120 | 20, 119 | nfan 1903 |
. . . . . . . . 9
⊢
Ⅎ𝑓(𝜑 ∧ (seq1(𝑃, 𝑈)‘𝑁) ∈ 𝑌) |
121 | | nfcv 2906 |
. . . . . . . . . 10
⊢
Ⅎ𝑓𝑇 |
122 | | nfcv 2906 |
. . . . . . . . . 10
⊢
Ⅎ𝑓ℝ |
123 | 118, 121,
122 | nff 6580 |
. . . . . . . . 9
⊢
Ⅎ𝑓(seq1(𝑃, 𝑈)‘𝑁):𝑇⟶ℝ |
124 | 120, 123 | nfim 1900 |
. . . . . . . 8
⊢
Ⅎ𝑓((𝜑 ∧ (seq1(𝑃, 𝑈)‘𝑁) ∈ 𝑌) → (seq1(𝑃, 𝑈)‘𝑁):𝑇⟶ℝ) |
125 | | eleq1 2826 |
. . . . . . . . . 10
⊢ (𝑓 = (seq1(𝑃, 𝑈)‘𝑁) → (𝑓 ∈ 𝑌 ↔ (seq1(𝑃, 𝑈)‘𝑁) ∈ 𝑌)) |
126 | 125 | anbi2d 628 |
. . . . . . . . 9
⊢ (𝑓 = (seq1(𝑃, 𝑈)‘𝑁) → ((𝜑 ∧ 𝑓 ∈ 𝑌) ↔ (𝜑 ∧ (seq1(𝑃, 𝑈)‘𝑁) ∈ 𝑌))) |
127 | | feq1 6565 |
. . . . . . . . 9
⊢ (𝑓 = (seq1(𝑃, 𝑈)‘𝑁) → (𝑓:𝑇⟶ℝ ↔ (seq1(𝑃, 𝑈)‘𝑁):𝑇⟶ℝ)) |
128 | 126, 127 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑓 = (seq1(𝑃, 𝑈)‘𝑁) → (((𝜑 ∧ 𝑓 ∈ 𝑌) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (seq1(𝑃, 𝑈)‘𝑁) ∈ 𝑌) → (seq1(𝑃, 𝑈)‘𝑁):𝑇⟶ℝ))) |
129 | 118, 124,
128, 29 | vtoclgf 3493 |
. . . . . . 7
⊢
((seq1(𝑃, 𝑈)‘𝑁) ∈ 𝑌 → ((𝜑 ∧ (seq1(𝑃, 𝑈)‘𝑁) ∈ 𝑌) → (seq1(𝑃, 𝑈)‘𝑁):𝑇⟶ℝ)) |
130 | 106, 111,
129 | sylc 65 |
. . . . . 6
⊢ (𝜑 → (seq1(𝑃, 𝑈)‘𝑁):𝑇⟶ℝ) |
131 | 130 | ffvelrnda 6943 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((seq1(𝑃, 𝑈)‘𝑁)‘𝑡) ∈ ℝ) |
132 | 131, 32 | remulcld 10936 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (((seq1(𝑃, 𝑈)‘𝑁)‘𝑡) · ((𝑈‘(𝑁 + 1))‘𝑡)) ∈ ℝ) |
133 | 110, 132 | fvmpt2d 6870 |
. . 3
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((seq1(𝑃, 𝑈)‘(𝑁 + 1))‘𝑡) = (((seq1(𝑃, 𝑈)‘𝑁)‘𝑡) · ((𝑈‘(𝑁 + 1))‘𝑡))) |
134 | | fmuldfeqlem1.12 |
. . . . 5
⊢ (𝜑 → ((seq1(𝑃, 𝑈)‘𝑁)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑁)) |
135 | 134 | oveq1d 7270 |
. . . 4
⊢ (𝜑 → (((seq1(𝑃, 𝑈)‘𝑁)‘𝑡) · ((𝑈‘(𝑁 + 1))‘𝑡)) = ((seq1( · , (𝐹‘𝑡))‘𝑁) · ((𝑈‘(𝑁 + 1))‘𝑡))) |
136 | 135 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (((seq1(𝑃, 𝑈)‘𝑁)‘𝑡) · ((𝑈‘(𝑁 + 1))‘𝑡)) = ((seq1( · , (𝐹‘𝑡))‘𝑁) · ((𝑈‘(𝑁 + 1))‘𝑡))) |
137 | 133, 136 | eqtrd 2778 |
. 2
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((seq1(𝑃, 𝑈)‘(𝑁 + 1))‘𝑡) = ((seq1( · , (𝐹‘𝑡))‘𝑁) · ((𝑈‘(𝑁 + 1))‘𝑡))) |
138 | 34, 40, 137 | 3eqtr4rd 2789 |
1
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((seq1(𝑃, 𝑈)‘(𝑁 + 1))‘𝑡) = (seq1( · , (𝐹‘𝑡))‘(𝑁 + 1))) |