| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tz6.12i-afv2 | Structured version Visualization version GIF version | ||
| Description: Corollary of Theorem 6.12(2) of [TakeutiZaring] p. 27. analogous to tz6.12i 6848. (Contributed by AV, 5-Sep-2022.) |
| Ref | Expression |
|---|---|
| tz6.12i-afv2 | ⊢ (𝐵 ∈ ran 𝐹 → ((𝐹''''𝐴) = 𝐵 → 𝐴𝐹𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2819 | . . . . . . . . 9 ⊢ ((𝐹''''𝐴) = 𝑦 → ((𝐹''''𝐴) ∈ ran 𝐹 ↔ 𝑦 ∈ ran 𝐹)) | |
| 2 | dfatafv2rnb 47337 | . . . . . . . . . . . 12 ⊢ (𝐹 defAt 𝐴 ↔ (𝐹''''𝐴) ∈ ran 𝐹) | |
| 3 | dfdfat2 47238 | . . . . . . . . . . . . 13 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑦 𝐴𝐹𝑦)) | |
| 4 | 3 | simprbi 496 | . . . . . . . . . . . 12 ⊢ (𝐹 defAt 𝐴 → ∃!𝑦 𝐴𝐹𝑦) |
| 5 | 2, 4 | sylbir 235 | . . . . . . . . . . 11 ⊢ ((𝐹''''𝐴) ∈ ran 𝐹 → ∃!𝑦 𝐴𝐹𝑦) |
| 6 | tz6.12c-afv2 47352 | . . . . . . . . . . 11 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ((𝐹''''𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) | |
| 7 | 5, 6 | syl 17 | . . . . . . . . . 10 ⊢ ((𝐹''''𝐴) ∈ ran 𝐹 → ((𝐹''''𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) |
| 8 | 7 | biimpcd 249 | . . . . . . . . 9 ⊢ ((𝐹''''𝐴) = 𝑦 → ((𝐹''''𝐴) ∈ ran 𝐹 → 𝐴𝐹𝑦)) |
| 9 | 1, 8 | sylbird 260 | . . . . . . . 8 ⊢ ((𝐹''''𝐴) = 𝑦 → (𝑦 ∈ ran 𝐹 → 𝐴𝐹𝑦)) |
| 10 | 9 | eqcoms 2739 | . . . . . . 7 ⊢ (𝑦 = (𝐹''''𝐴) → (𝑦 ∈ ran 𝐹 → 𝐴𝐹𝑦)) |
| 11 | eleq1 2819 | . . . . . . 7 ⊢ (𝑦 = (𝐹''''𝐴) → (𝑦 ∈ ran 𝐹 ↔ (𝐹''''𝐴) ∈ ran 𝐹)) | |
| 12 | breq2 5093 | . . . . . . 7 ⊢ (𝑦 = (𝐹''''𝐴) → (𝐴𝐹𝑦 ↔ 𝐴𝐹(𝐹''''𝐴))) | |
| 13 | 10, 11, 12 | 3imtr3d 293 | . . . . . 6 ⊢ (𝑦 = (𝐹''''𝐴) → ((𝐹''''𝐴) ∈ ran 𝐹 → 𝐴𝐹(𝐹''''𝐴))) |
| 14 | 13 | vtocleg 3506 | . . . . 5 ⊢ ((𝐹''''𝐴) ∈ ran 𝐹 → ((𝐹''''𝐴) ∈ ran 𝐹 → 𝐴𝐹(𝐹''''𝐴))) |
| 15 | 14 | pm2.43i 52 | . . . 4 ⊢ ((𝐹''''𝐴) ∈ ran 𝐹 → 𝐴𝐹(𝐹''''𝐴)) |
| 16 | 15 | a1i 11 | . . 3 ⊢ ((𝐹''''𝐴) = 𝐵 → ((𝐹''''𝐴) ∈ ran 𝐹 → 𝐴𝐹(𝐹''''𝐴))) |
| 17 | eleq1 2819 | . . 3 ⊢ ((𝐹''''𝐴) = 𝐵 → ((𝐹''''𝐴) ∈ ran 𝐹 ↔ 𝐵 ∈ ran 𝐹)) | |
| 18 | breq2 5093 | . . 3 ⊢ ((𝐹''''𝐴) = 𝐵 → (𝐴𝐹(𝐹''''𝐴) ↔ 𝐴𝐹𝐵)) | |
| 19 | 16, 17, 18 | 3imtr3d 293 | . 2 ⊢ ((𝐹''''𝐴) = 𝐵 → (𝐵 ∈ ran 𝐹 → 𝐴𝐹𝐵)) |
| 20 | 19 | com12 32 | 1 ⊢ (𝐵 ∈ ran 𝐹 → ((𝐹''''𝐴) = 𝐵 → 𝐴𝐹𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∃!weu 2563 class class class wbr 5089 dom cdm 5614 ran crn 5615 defAt wdfat 47226 ''''cafv2 47318 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-iota 6437 df-fun 6483 df-fn 6484 df-dfat 47229 df-afv2 47319 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |