Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tz6.12i-afv2 Structured version   Visualization version   GIF version

Theorem tz6.12i-afv2 47353
Description: Corollary of Theorem 6.12(2) of [TakeutiZaring] p. 27. analogous to tz6.12i 6848. (Contributed by AV, 5-Sep-2022.)
Assertion
Ref Expression
tz6.12i-afv2 (𝐵 ∈ ran 𝐹 → ((𝐹''''𝐴) = 𝐵𝐴𝐹𝐵))

Proof of Theorem tz6.12i-afv2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2819 . . . . . . . . 9 ((𝐹''''𝐴) = 𝑦 → ((𝐹''''𝐴) ∈ ran 𝐹𝑦 ∈ ran 𝐹))
2 dfatafv2rnb 47337 . . . . . . . . . . . 12 (𝐹 defAt 𝐴 ↔ (𝐹''''𝐴) ∈ ran 𝐹)
3 dfdfat2 47238 . . . . . . . . . . . . 13 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑦 𝐴𝐹𝑦))
43simprbi 496 . . . . . . . . . . . 12 (𝐹 defAt 𝐴 → ∃!𝑦 𝐴𝐹𝑦)
52, 4sylbir 235 . . . . . . . . . . 11 ((𝐹''''𝐴) ∈ ran 𝐹 → ∃!𝑦 𝐴𝐹𝑦)
6 tz6.12c-afv2 47352 . . . . . . . . . . 11 (∃!𝑦 𝐴𝐹𝑦 → ((𝐹''''𝐴) = 𝑦𝐴𝐹𝑦))
75, 6syl 17 . . . . . . . . . 10 ((𝐹''''𝐴) ∈ ran 𝐹 → ((𝐹''''𝐴) = 𝑦𝐴𝐹𝑦))
87biimpcd 249 . . . . . . . . 9 ((𝐹''''𝐴) = 𝑦 → ((𝐹''''𝐴) ∈ ran 𝐹𝐴𝐹𝑦))
91, 8sylbird 260 . . . . . . . 8 ((𝐹''''𝐴) = 𝑦 → (𝑦 ∈ ran 𝐹𝐴𝐹𝑦))
109eqcoms 2739 . . . . . . 7 (𝑦 = (𝐹''''𝐴) → (𝑦 ∈ ran 𝐹𝐴𝐹𝑦))
11 eleq1 2819 . . . . . . 7 (𝑦 = (𝐹''''𝐴) → (𝑦 ∈ ran 𝐹 ↔ (𝐹''''𝐴) ∈ ran 𝐹))
12 breq2 5093 . . . . . . 7 (𝑦 = (𝐹''''𝐴) → (𝐴𝐹𝑦𝐴𝐹(𝐹''''𝐴)))
1310, 11, 123imtr3d 293 . . . . . 6 (𝑦 = (𝐹''''𝐴) → ((𝐹''''𝐴) ∈ ran 𝐹𝐴𝐹(𝐹''''𝐴)))
1413vtocleg 3506 . . . . 5 ((𝐹''''𝐴) ∈ ran 𝐹 → ((𝐹''''𝐴) ∈ ran 𝐹𝐴𝐹(𝐹''''𝐴)))
1514pm2.43i 52 . . . 4 ((𝐹''''𝐴) ∈ ran 𝐹𝐴𝐹(𝐹''''𝐴))
1615a1i 11 . . 3 ((𝐹''''𝐴) = 𝐵 → ((𝐹''''𝐴) ∈ ran 𝐹𝐴𝐹(𝐹''''𝐴)))
17 eleq1 2819 . . 3 ((𝐹''''𝐴) = 𝐵 → ((𝐹''''𝐴) ∈ ran 𝐹𝐵 ∈ ran 𝐹))
18 breq2 5093 . . 3 ((𝐹''''𝐴) = 𝐵 → (𝐴𝐹(𝐹''''𝐴) ↔ 𝐴𝐹𝐵))
1916, 17, 183imtr3d 293 . 2 ((𝐹''''𝐴) = 𝐵 → (𝐵 ∈ ran 𝐹𝐴𝐹𝐵))
2019com12 32 1 (𝐵 ∈ ran 𝐹 → ((𝐹''''𝐴) = 𝐵𝐴𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  ∃!weu 2563   class class class wbr 5089  dom cdm 5614  ran crn 5615   defAt wdfat 47226  ''''cafv2 47318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-iota 6437  df-fun 6483  df-fn 6484  df-dfat 47229  df-afv2 47319
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator