![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tz6.12i-afv2 | Structured version Visualization version GIF version |
Description: Corollary of Theorem 6.12(2) of [TakeutiZaring] p. 27. analogous to tz6.12i 6916. (Contributed by AV, 5-Sep-2022.) |
Ref | Expression |
---|---|
tz6.12i-afv2 | ⊢ (𝐵 ∈ ran 𝐹 → ((𝐹''''𝐴) = 𝐵 → 𝐴𝐹𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2821 | . . . . . . . . 9 ⊢ ((𝐹''''𝐴) = 𝑦 → ((𝐹''''𝐴) ∈ ran 𝐹 ↔ 𝑦 ∈ ran 𝐹)) | |
2 | dfatafv2rnb 45921 | . . . . . . . . . . . 12 ⊢ (𝐹 defAt 𝐴 ↔ (𝐹''''𝐴) ∈ ran 𝐹) | |
3 | dfdfat2 45822 | . . . . . . . . . . . . 13 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑦 𝐴𝐹𝑦)) | |
4 | 3 | simprbi 497 | . . . . . . . . . . . 12 ⊢ (𝐹 defAt 𝐴 → ∃!𝑦 𝐴𝐹𝑦) |
5 | 2, 4 | sylbir 234 | . . . . . . . . . . 11 ⊢ ((𝐹''''𝐴) ∈ ran 𝐹 → ∃!𝑦 𝐴𝐹𝑦) |
6 | tz6.12c-afv2 45936 | . . . . . . . . . . 11 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ((𝐹''''𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) | |
7 | 5, 6 | syl 17 | . . . . . . . . . 10 ⊢ ((𝐹''''𝐴) ∈ ran 𝐹 → ((𝐹''''𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) |
8 | 7 | biimpcd 248 | . . . . . . . . 9 ⊢ ((𝐹''''𝐴) = 𝑦 → ((𝐹''''𝐴) ∈ ran 𝐹 → 𝐴𝐹𝑦)) |
9 | 1, 8 | sylbird 259 | . . . . . . . 8 ⊢ ((𝐹''''𝐴) = 𝑦 → (𝑦 ∈ ran 𝐹 → 𝐴𝐹𝑦)) |
10 | 9 | eqcoms 2740 | . . . . . . 7 ⊢ (𝑦 = (𝐹''''𝐴) → (𝑦 ∈ ran 𝐹 → 𝐴𝐹𝑦)) |
11 | eleq1 2821 | . . . . . . 7 ⊢ (𝑦 = (𝐹''''𝐴) → (𝑦 ∈ ran 𝐹 ↔ (𝐹''''𝐴) ∈ ran 𝐹)) | |
12 | breq2 5151 | . . . . . . 7 ⊢ (𝑦 = (𝐹''''𝐴) → (𝐴𝐹𝑦 ↔ 𝐴𝐹(𝐹''''𝐴))) | |
13 | 10, 11, 12 | 3imtr3d 292 | . . . . . 6 ⊢ (𝑦 = (𝐹''''𝐴) → ((𝐹''''𝐴) ∈ ran 𝐹 → 𝐴𝐹(𝐹''''𝐴))) |
14 | 13 | vtocleg 3545 | . . . . 5 ⊢ ((𝐹''''𝐴) ∈ ran 𝐹 → ((𝐹''''𝐴) ∈ ran 𝐹 → 𝐴𝐹(𝐹''''𝐴))) |
15 | 14 | pm2.43i 52 | . . . 4 ⊢ ((𝐹''''𝐴) ∈ ran 𝐹 → 𝐴𝐹(𝐹''''𝐴)) |
16 | 15 | a1i 11 | . . 3 ⊢ ((𝐹''''𝐴) = 𝐵 → ((𝐹''''𝐴) ∈ ran 𝐹 → 𝐴𝐹(𝐹''''𝐴))) |
17 | eleq1 2821 | . . 3 ⊢ ((𝐹''''𝐴) = 𝐵 → ((𝐹''''𝐴) ∈ ran 𝐹 ↔ 𝐵 ∈ ran 𝐹)) | |
18 | breq2 5151 | . . 3 ⊢ ((𝐹''''𝐴) = 𝐵 → (𝐴𝐹(𝐹''''𝐴) ↔ 𝐴𝐹𝐵)) | |
19 | 16, 17, 18 | 3imtr3d 292 | . 2 ⊢ ((𝐹''''𝐴) = 𝐵 → (𝐵 ∈ ran 𝐹 → 𝐴𝐹𝐵)) |
20 | 19 | com12 32 | 1 ⊢ (𝐵 ∈ ran 𝐹 → ((𝐹''''𝐴) = 𝐵 → 𝐴𝐹𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 ∃!weu 2562 class class class wbr 5147 dom cdm 5675 ran crn 5676 defAt wdfat 45810 ''''cafv2 45902 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-iota 6492 df-fun 6542 df-fn 6543 df-dfat 45813 df-afv2 45903 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |