| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tz6.12i-afv2 | Structured version Visualization version GIF version | ||
| Description: Corollary of Theorem 6.12(2) of [TakeutiZaring] p. 27. analogous to tz6.12i 6889. (Contributed by AV, 5-Sep-2022.) |
| Ref | Expression |
|---|---|
| tz6.12i-afv2 | ⊢ (𝐵 ∈ ran 𝐹 → ((𝐹''''𝐴) = 𝐵 → 𝐴𝐹𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2817 | . . . . . . . . 9 ⊢ ((𝐹''''𝐴) = 𝑦 → ((𝐹''''𝐴) ∈ ran 𝐹 ↔ 𝑦 ∈ ran 𝐹)) | |
| 2 | dfatafv2rnb 47232 | . . . . . . . . . . . 12 ⊢ (𝐹 defAt 𝐴 ↔ (𝐹''''𝐴) ∈ ran 𝐹) | |
| 3 | dfdfat2 47133 | . . . . . . . . . . . . 13 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑦 𝐴𝐹𝑦)) | |
| 4 | 3 | simprbi 496 | . . . . . . . . . . . 12 ⊢ (𝐹 defAt 𝐴 → ∃!𝑦 𝐴𝐹𝑦) |
| 5 | 2, 4 | sylbir 235 | . . . . . . . . . . 11 ⊢ ((𝐹''''𝐴) ∈ ran 𝐹 → ∃!𝑦 𝐴𝐹𝑦) |
| 6 | tz6.12c-afv2 47247 | . . . . . . . . . . 11 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ((𝐹''''𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) | |
| 7 | 5, 6 | syl 17 | . . . . . . . . . 10 ⊢ ((𝐹''''𝐴) ∈ ran 𝐹 → ((𝐹''''𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) |
| 8 | 7 | biimpcd 249 | . . . . . . . . 9 ⊢ ((𝐹''''𝐴) = 𝑦 → ((𝐹''''𝐴) ∈ ran 𝐹 → 𝐴𝐹𝑦)) |
| 9 | 1, 8 | sylbird 260 | . . . . . . . 8 ⊢ ((𝐹''''𝐴) = 𝑦 → (𝑦 ∈ ran 𝐹 → 𝐴𝐹𝑦)) |
| 10 | 9 | eqcoms 2738 | . . . . . . 7 ⊢ (𝑦 = (𝐹''''𝐴) → (𝑦 ∈ ran 𝐹 → 𝐴𝐹𝑦)) |
| 11 | eleq1 2817 | . . . . . . 7 ⊢ (𝑦 = (𝐹''''𝐴) → (𝑦 ∈ ran 𝐹 ↔ (𝐹''''𝐴) ∈ ran 𝐹)) | |
| 12 | breq2 5114 | . . . . . . 7 ⊢ (𝑦 = (𝐹''''𝐴) → (𝐴𝐹𝑦 ↔ 𝐴𝐹(𝐹''''𝐴))) | |
| 13 | 10, 11, 12 | 3imtr3d 293 | . . . . . 6 ⊢ (𝑦 = (𝐹''''𝐴) → ((𝐹''''𝐴) ∈ ran 𝐹 → 𝐴𝐹(𝐹''''𝐴))) |
| 14 | 13 | vtocleg 3522 | . . . . 5 ⊢ ((𝐹''''𝐴) ∈ ran 𝐹 → ((𝐹''''𝐴) ∈ ran 𝐹 → 𝐴𝐹(𝐹''''𝐴))) |
| 15 | 14 | pm2.43i 52 | . . . 4 ⊢ ((𝐹''''𝐴) ∈ ran 𝐹 → 𝐴𝐹(𝐹''''𝐴)) |
| 16 | 15 | a1i 11 | . . 3 ⊢ ((𝐹''''𝐴) = 𝐵 → ((𝐹''''𝐴) ∈ ran 𝐹 → 𝐴𝐹(𝐹''''𝐴))) |
| 17 | eleq1 2817 | . . 3 ⊢ ((𝐹''''𝐴) = 𝐵 → ((𝐹''''𝐴) ∈ ran 𝐹 ↔ 𝐵 ∈ ran 𝐹)) | |
| 18 | breq2 5114 | . . 3 ⊢ ((𝐹''''𝐴) = 𝐵 → (𝐴𝐹(𝐹''''𝐴) ↔ 𝐴𝐹𝐵)) | |
| 19 | 16, 17, 18 | 3imtr3d 293 | . 2 ⊢ ((𝐹''''𝐴) = 𝐵 → (𝐵 ∈ ran 𝐹 → 𝐴𝐹𝐵)) |
| 20 | 19 | com12 32 | 1 ⊢ (𝐵 ∈ ran 𝐹 → ((𝐹''''𝐴) = 𝐵 → 𝐴𝐹𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃!weu 2562 class class class wbr 5110 dom cdm 5641 ran crn 5642 defAt wdfat 47121 ''''cafv2 47213 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-iota 6467 df-fun 6516 df-fn 6517 df-dfat 47124 df-afv2 47214 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |