Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tz6.12i-afv2 Structured version   Visualization version   GIF version

Theorem tz6.12i-afv2 44622
Description: Corollary of Theorem 6.12(2) of [TakeutiZaring] p. 27. analogous to tz6.12i 6782. (Contributed by AV, 5-Sep-2022.)
Assertion
Ref Expression
tz6.12i-afv2 (𝐵 ∈ ran 𝐹 → ((𝐹''''𝐴) = 𝐵𝐴𝐹𝐵))

Proof of Theorem tz6.12i-afv2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2826 . . . . . . . . 9 ((𝐹''''𝐴) = 𝑦 → ((𝐹''''𝐴) ∈ ran 𝐹𝑦 ∈ ran 𝐹))
2 dfatafv2rnb 44606 . . . . . . . . . . . 12 (𝐹 defAt 𝐴 ↔ (𝐹''''𝐴) ∈ ran 𝐹)
3 dfdfat2 44507 . . . . . . . . . . . . 13 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑦 𝐴𝐹𝑦))
43simprbi 496 . . . . . . . . . . . 12 (𝐹 defAt 𝐴 → ∃!𝑦 𝐴𝐹𝑦)
52, 4sylbir 234 . . . . . . . . . . 11 ((𝐹''''𝐴) ∈ ran 𝐹 → ∃!𝑦 𝐴𝐹𝑦)
6 tz6.12c-afv2 44621 . . . . . . . . . . 11 (∃!𝑦 𝐴𝐹𝑦 → ((𝐹''''𝐴) = 𝑦𝐴𝐹𝑦))
75, 6syl 17 . . . . . . . . . 10 ((𝐹''''𝐴) ∈ ran 𝐹 → ((𝐹''''𝐴) = 𝑦𝐴𝐹𝑦))
87biimpcd 248 . . . . . . . . 9 ((𝐹''''𝐴) = 𝑦 → ((𝐹''''𝐴) ∈ ran 𝐹𝐴𝐹𝑦))
91, 8sylbird 259 . . . . . . . 8 ((𝐹''''𝐴) = 𝑦 → (𝑦 ∈ ran 𝐹𝐴𝐹𝑦))
109eqcoms 2746 . . . . . . 7 (𝑦 = (𝐹''''𝐴) → (𝑦 ∈ ran 𝐹𝐴𝐹𝑦))
11 eleq1 2826 . . . . . . 7 (𝑦 = (𝐹''''𝐴) → (𝑦 ∈ ran 𝐹 ↔ (𝐹''''𝐴) ∈ ran 𝐹))
12 breq2 5074 . . . . . . 7 (𝑦 = (𝐹''''𝐴) → (𝐴𝐹𝑦𝐴𝐹(𝐹''''𝐴)))
1310, 11, 123imtr3d 292 . . . . . 6 (𝑦 = (𝐹''''𝐴) → ((𝐹''''𝐴) ∈ ran 𝐹𝐴𝐹(𝐹''''𝐴)))
1413vtocleg 3511 . . . . 5 ((𝐹''''𝐴) ∈ ran 𝐹 → ((𝐹''''𝐴) ∈ ran 𝐹𝐴𝐹(𝐹''''𝐴)))
1514pm2.43i 52 . . . 4 ((𝐹''''𝐴) ∈ ran 𝐹𝐴𝐹(𝐹''''𝐴))
1615a1i 11 . . 3 ((𝐹''''𝐴) = 𝐵 → ((𝐹''''𝐴) ∈ ran 𝐹𝐴𝐹(𝐹''''𝐴)))
17 eleq1 2826 . . 3 ((𝐹''''𝐴) = 𝐵 → ((𝐹''''𝐴) ∈ ran 𝐹𝐵 ∈ ran 𝐹))
18 breq2 5074 . . 3 ((𝐹''''𝐴) = 𝐵 → (𝐴𝐹(𝐹''''𝐴) ↔ 𝐴𝐹𝐵))
1916, 17, 183imtr3d 292 . 2 ((𝐹''''𝐴) = 𝐵 → (𝐵 ∈ ran 𝐹𝐴𝐹𝐵))
2019com12 32 1 (𝐵 ∈ ran 𝐹 → ((𝐹''''𝐴) = 𝐵𝐴𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  ∃!weu 2568   class class class wbr 5070  dom cdm 5580  ran crn 5581   defAt wdfat 44495  ''''cafv2 44587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-iota 6376  df-fun 6420  df-fn 6421  df-dfat 44498  df-afv2 44588
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator