Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ralssiun Structured version   Visualization version   GIF version

Theorem ralssiun 34240
Description: The index set of an indexed union is a subset of the union when each 𝐵 contains its index. (Contributed by ML, 16-Dec-2020.)
Assertion
Ref Expression
ralssiun (∀𝑥𝐴 𝑥𝐵𝐴 𝑥𝐴 𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem ralssiun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfra1 3188 . 2 𝑥𝑥𝐴 𝑥𝐵
2 nfcv 2951 . 2 𝑥𝐴
3 nfiu1 4862 . 2 𝑥 𝑥𝐴 𝐵
4 simpr 485 . . . . . . . . . . 11 (((𝑥 = 𝑦 ∧ ∀𝑥𝐴 𝑥𝐵) ∧ 𝑥𝐴) → 𝑥𝐴)
5 rsp 3174 . . . . . . . . . . . . . 14 (∀𝑥𝐴 𝑥𝐵 → (𝑥𝐴𝑥𝐵))
65adantl 482 . . . . . . . . . . . . 13 ((𝑥 = 𝑦 ∧ ∀𝑥𝐴 𝑥𝐵) → (𝑥𝐴𝑥𝐵))
7 eleq1 2872 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
87imbi2d 342 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((𝑥𝐴𝑥𝐵) ↔ (𝑥𝐴𝑦𝐵)))
98adantr 481 . . . . . . . . . . . . 13 ((𝑥 = 𝑦 ∧ ∀𝑥𝐴 𝑥𝐵) → ((𝑥𝐴𝑥𝐵) ↔ (𝑥𝐴𝑦𝐵)))
106, 9mpbid 233 . . . . . . . . . . . 12 ((𝑥 = 𝑦 ∧ ∀𝑥𝐴 𝑥𝐵) → (𝑥𝐴𝑦𝐵))
1110imp 407 . . . . . . . . . . 11 (((𝑥 = 𝑦 ∧ ∀𝑥𝐴 𝑥𝐵) ∧ 𝑥𝐴) → 𝑦𝐵)
12 rspe 3269 . . . . . . . . . . 11 ((𝑥𝐴𝑦𝐵) → ∃𝑥𝐴 𝑦𝐵)
134, 11, 12syl2anc 584 . . . . . . . . . 10 (((𝑥 = 𝑦 ∧ ∀𝑥𝐴 𝑥𝐵) ∧ 𝑥𝐴) → ∃𝑥𝐴 𝑦𝐵)
14 abid 2781 . . . . . . . . . 10 (𝑦 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵} ↔ ∃𝑥𝐴 𝑦𝐵)
1513, 14sylibr 235 . . . . . . . . 9 (((𝑥 = 𝑦 ∧ ∀𝑥𝐴 𝑥𝐵) ∧ 𝑥𝐴) → 𝑦 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵})
16 eleq1 2872 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵} ↔ 𝑦 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵}))
1716ad2antrr 722 . . . . . . . . 9 (((𝑥 = 𝑦 ∧ ∀𝑥𝐴 𝑥𝐵) ∧ 𝑥𝐴) → (𝑥 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵} ↔ 𝑦 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵}))
1815, 17mpbird 258 . . . . . . . 8 (((𝑥 = 𝑦 ∧ ∀𝑥𝐴 𝑥𝐵) ∧ 𝑥𝐴) → 𝑥 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵})
19 df-iun 4833 . . . . . . . 8 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵}
2018, 19syl6eleqr 2896 . . . . . . 7 (((𝑥 = 𝑦 ∧ ∀𝑥𝐴 𝑥𝐵) ∧ 𝑥𝐴) → 𝑥 𝑥𝐴 𝐵)
2120expl 458 . . . . . 6 (𝑥 = 𝑦 → ((∀𝑥𝐴 𝑥𝐵𝑥𝐴) → 𝑥 𝑥𝐴 𝐵))
2221equcoms 2008 . . . . 5 (𝑦 = 𝑥 → ((∀𝑥𝐴 𝑥𝐵𝑥𝐴) → 𝑥 𝑥𝐴 𝐵))
2322vtocleg 3526 . . . 4 (𝑥𝐴 → ((∀𝑥𝐴 𝑥𝐵𝑥𝐴) → 𝑥 𝑥𝐴 𝐵))
2423anabsi7 667 . . 3 ((∀𝑥𝐴 𝑥𝐵𝑥𝐴) → 𝑥 𝑥𝐴 𝐵)
2524ex 413 . 2 (∀𝑥𝐴 𝑥𝐵 → (𝑥𝐴𝑥 𝑥𝐴 𝐵))
261, 2, 3, 25ssrd 3900 1 (∀𝑥𝐴 𝑥𝐵𝐴 𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1525  wcel 2083  {cab 2777  wral 3107  wrex 3108  wss 3865   ciun 4831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ral 3112  df-rex 3113  df-in 3872  df-ss 3880  df-iun 4833
This theorem is referenced by:  pibt2  34250
  Copyright terms: Public domain W3C validator