Step | Hyp | Ref
| Expression |
1 | | nfra1 3140 |
. 2
⊢
Ⅎ𝑥∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 |
2 | | nfcv 2904 |
. 2
⊢
Ⅎ𝑥𝐴 |
3 | | nfiu1 4938 |
. 2
⊢
Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 |
4 | | simpr 488 |
. . . . . . . . . . 11
⊢ (((𝑥 = 𝑦 ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
5 | | rsp 3127 |
. . . . . . . . . . . . . 14
⊢
(∀𝑥 ∈
𝐴 𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
6 | 5 | adantl 485 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝑦 ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
7 | | eleq1 2825 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) |
8 | 7 | imbi2d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐵))) |
9 | 8 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝑦 ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐵))) |
10 | 6, 9 | mpbid 235 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑦 ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) → (𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐵)) |
11 | 10 | imp 410 |
. . . . . . . . . . 11
⊢ (((𝑥 = 𝑦 ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐵) |
12 | | rspe 3223 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
13 | 4, 11, 12 | syl2anc 587 |
. . . . . . . . . 10
⊢ (((𝑥 = 𝑦 ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
14 | | abid 2718 |
. . . . . . . . . 10
⊢ (𝑦 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
15 | 13, 14 | sylibr 237 |
. . . . . . . . 9
⊢ (((𝑥 = 𝑦 ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵}) |
16 | | eleq1 2825 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑥 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} ↔ 𝑦 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵})) |
17 | 16 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝑥 = 𝑦 ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} ↔ 𝑦 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵})) |
18 | 15, 17 | mpbird 260 |
. . . . . . . 8
⊢ (((𝑥 = 𝑦 ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵}) |
19 | | df-iun 4906 |
. . . . . . . 8
⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
20 | 18, 19 | eleqtrrdi 2849 |
. . . . . . 7
⊢ (((𝑥 = 𝑦 ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ∪
𝑥 ∈ 𝐴 𝐵) |
21 | 20 | expl 461 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ∪
𝑥 ∈ 𝐴 𝐵)) |
22 | 21 | equcoms 2028 |
. . . . 5
⊢ (𝑦 = 𝑥 → ((∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ∪
𝑥 ∈ 𝐴 𝐵)) |
23 | 22 | vtocleg 3497 |
. . . 4
⊢ (𝑥 ∈ 𝐴 → ((∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ∪
𝑥 ∈ 𝐴 𝐵)) |
24 | 23 | anabsi7 671 |
. . 3
⊢
((∀𝑥 ∈
𝐴 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ∪
𝑥 ∈ 𝐴 𝐵) |
25 | 24 | ex 416 |
. 2
⊢
(∀𝑥 ∈
𝐴 𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ ∪
𝑥 ∈ 𝐴 𝐵)) |
26 | 1, 2, 3, 25 | ssrd 3906 |
1
⊢
(∀𝑥 ∈
𝐴 𝑥 ∈ 𝐵 → 𝐴 ⊆ ∪
𝑥 ∈ 𝐴 𝐵) |