Mathbox for Wolf Lammen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-mo2t Structured version   Visualization version   GIF version

Theorem wl-mo2t 34848
 Description: Closed form of mof 2646. (Contributed by Wolf Lammen, 18-Aug-2019.)
Assertion
Ref Expression
wl-mo2t (∀𝑥𝑦𝜑 → (∃*𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem wl-mo2t
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 df-mo 2622 . 2 (∃*𝑥𝜑 ↔ ∃𝑢𝑥(𝜑𝑥 = 𝑢))
2 nfnf1 2158 . . . 4 𝑦𝑦𝜑
32nfal 2342 . . 3 𝑦𝑥𝑦𝜑
4 nfa1 2155 . . . 4 𝑥𝑥𝑦𝜑
5 sp 2182 . . . . 5 (∀𝑥𝑦𝜑 → Ⅎ𝑦𝜑)
6 nfvd 1916 . . . . 5 (∀𝑥𝑦𝜑 → Ⅎ𝑦 𝑥 = 𝑢)
75, 6nfimd 1895 . . . 4 (∀𝑥𝑦𝜑 → Ⅎ𝑦(𝜑𝑥 = 𝑢))
84, 7nfald 2347 . . 3 (∀𝑥𝑦𝜑 → Ⅎ𝑦𝑥(𝜑𝑥 = 𝑢))
9 equequ2 2033 . . . . . 6 (𝑢 = 𝑦 → (𝑥 = 𝑢𝑥 = 𝑦))
109imbi2d 343 . . . . 5 (𝑢 = 𝑦 → ((𝜑𝑥 = 𝑢) ↔ (𝜑𝑥 = 𝑦)))
1110albidv 1921 . . . 4 (𝑢 = 𝑦 → (∀𝑥(𝜑𝑥 = 𝑢) ↔ ∀𝑥(𝜑𝑥 = 𝑦)))
1211a1i 11 . . 3 (∀𝑥𝑦𝜑 → (𝑢 = 𝑦 → (∀𝑥(𝜑𝑥 = 𝑢) ↔ ∀𝑥(𝜑𝑥 = 𝑦))))
133, 8, 12cbvexdw 2359 . 2 (∀𝑥𝑦𝜑 → (∃𝑢𝑥(𝜑𝑥 = 𝑢) ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
141, 13syl5bb 285 1 (∀𝑥𝑦𝜑 → (∃*𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208  ∀wal 1535  ∃wex 1780  Ⅎwnf 1784  ∃*wmo 2620 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-10 2145  ax-11 2161  ax-12 2177 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ex 1781  df-nf 1785  df-mo 2622 This theorem is referenced by:  wl-mo3t  34849
 Copyright terms: Public domain W3C validator