![]() |
Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-mo2t | Structured version Visualization version GIF version |
Description: Closed form of mof 2561. (Contributed by Wolf Lammen, 18-Aug-2019.) |
Ref | Expression |
---|---|
wl-mo2t | ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mo 2538 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∃𝑢∀𝑥(𝜑 → 𝑥 = 𝑢)) | |
2 | nfnf1 2152 | . . . 4 ⊢ Ⅎ𝑦Ⅎ𝑦𝜑 | |
3 | 2 | nfal 2322 | . . 3 ⊢ Ⅎ𝑦∀𝑥Ⅎ𝑦𝜑 |
4 | nfa1 2149 | . . . 4 ⊢ Ⅎ𝑥∀𝑥Ⅎ𝑦𝜑 | |
5 | sp 2181 | . . . . 5 ⊢ (∀𝑥Ⅎ𝑦𝜑 → Ⅎ𝑦𝜑) | |
6 | nfvd 1913 | . . . . 5 ⊢ (∀𝑥Ⅎ𝑦𝜑 → Ⅎ𝑦 𝑥 = 𝑢) | |
7 | 5, 6 | nfimd 1892 | . . . 4 ⊢ (∀𝑥Ⅎ𝑦𝜑 → Ⅎ𝑦(𝜑 → 𝑥 = 𝑢)) |
8 | 4, 7 | nfald 2327 | . . 3 ⊢ (∀𝑥Ⅎ𝑦𝜑 → Ⅎ𝑦∀𝑥(𝜑 → 𝑥 = 𝑢)) |
9 | equequ2 2023 | . . . . . 6 ⊢ (𝑢 = 𝑦 → (𝑥 = 𝑢 ↔ 𝑥 = 𝑦)) | |
10 | 9 | imbi2d 340 | . . . . 5 ⊢ (𝑢 = 𝑦 → ((𝜑 → 𝑥 = 𝑢) ↔ (𝜑 → 𝑥 = 𝑦))) |
11 | 10 | albidv 1918 | . . . 4 ⊢ (𝑢 = 𝑦 → (∀𝑥(𝜑 → 𝑥 = 𝑢) ↔ ∀𝑥(𝜑 → 𝑥 = 𝑦))) |
12 | 11 | a1i 11 | . . 3 ⊢ (∀𝑥Ⅎ𝑦𝜑 → (𝑢 = 𝑦 → (∀𝑥(𝜑 → 𝑥 = 𝑢) ↔ ∀𝑥(𝜑 → 𝑥 = 𝑦)))) |
13 | 3, 8, 12 | cbvexdw 2340 | . 2 ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∃𝑢∀𝑥(𝜑 → 𝑥 = 𝑢) ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
14 | 1, 13 | bitrid 283 | 1 ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 ∃wex 1776 Ⅎwnf 1780 ∃*wmo 2536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-10 2139 ax-11 2155 ax-12 2175 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1777 df-nf 1781 df-mo 2538 |
This theorem is referenced by: wl-mo3t 37557 |
Copyright terms: Public domain | W3C validator |