| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-mo2t | Structured version Visualization version GIF version | ||
| Description: Closed form of mof 2563. (Contributed by Wolf Lammen, 18-Aug-2019.) |
| Ref | Expression |
|---|---|
| wl-mo2t | ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mo 2540 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∃𝑢∀𝑥(𝜑 → 𝑥 = 𝑢)) | |
| 2 | nfnf1 2155 | . . . 4 ⊢ Ⅎ𝑦Ⅎ𝑦𝜑 | |
| 3 | 2 | nfal 2324 | . . 3 ⊢ Ⅎ𝑦∀𝑥Ⅎ𝑦𝜑 |
| 4 | nfa1 2152 | . . . 4 ⊢ Ⅎ𝑥∀𝑥Ⅎ𝑦𝜑 | |
| 5 | sp 2184 | . . . . 5 ⊢ (∀𝑥Ⅎ𝑦𝜑 → Ⅎ𝑦𝜑) | |
| 6 | nfvd 1915 | . . . . 5 ⊢ (∀𝑥Ⅎ𝑦𝜑 → Ⅎ𝑦 𝑥 = 𝑢) | |
| 7 | 5, 6 | nfimd 1894 | . . . 4 ⊢ (∀𝑥Ⅎ𝑦𝜑 → Ⅎ𝑦(𝜑 → 𝑥 = 𝑢)) |
| 8 | 4, 7 | nfald 2329 | . . 3 ⊢ (∀𝑥Ⅎ𝑦𝜑 → Ⅎ𝑦∀𝑥(𝜑 → 𝑥 = 𝑢)) |
| 9 | equequ2 2026 | . . . . . 6 ⊢ (𝑢 = 𝑦 → (𝑥 = 𝑢 ↔ 𝑥 = 𝑦)) | |
| 10 | 9 | imbi2d 340 | . . . . 5 ⊢ (𝑢 = 𝑦 → ((𝜑 → 𝑥 = 𝑢) ↔ (𝜑 → 𝑥 = 𝑦))) |
| 11 | 10 | albidv 1920 | . . . 4 ⊢ (𝑢 = 𝑦 → (∀𝑥(𝜑 → 𝑥 = 𝑢) ↔ ∀𝑥(𝜑 → 𝑥 = 𝑦))) |
| 12 | 11 | a1i 11 | . . 3 ⊢ (∀𝑥Ⅎ𝑦𝜑 → (𝑢 = 𝑦 → (∀𝑥(𝜑 → 𝑥 = 𝑢) ↔ ∀𝑥(𝜑 → 𝑥 = 𝑦)))) |
| 13 | 3, 8, 12 | cbvexdw 2341 | . 2 ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∃𝑢∀𝑥(𝜑 → 𝑥 = 𝑢) ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
| 14 | 1, 13 | bitrid 283 | 1 ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 ∃*wmo 2538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-mo 2540 |
| This theorem is referenced by: wl-mo3t 37599 |
| Copyright terms: Public domain | W3C validator |