MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunot Structured version   Visualization version   GIF version

Theorem wunot 9861
Description: A weak universe is closed under ordered triples. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunop.2 (𝜑𝐴𝑈)
wunop.3 (𝜑𝐵𝑈)
wunot.3 (𝜑𝐶𝑈)
Assertion
Ref Expression
wunot (𝜑 → ⟨𝐴, 𝐵, 𝐶⟩ ∈ 𝑈)

Proof of Theorem wunot
StepHypRef Expression
1 df-ot 4407 . 2 𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶
2 wun0.1 . . 3 (𝜑𝑈 ∈ WUni)
3 wunop.2 . . . 4 (𝜑𝐴𝑈)
4 wunop.3 . . . 4 (𝜑𝐵𝑈)
52, 3, 4wunop 9860 . . 3 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ 𝑈)
6 wunot.3 . . 3 (𝜑𝐶𝑈)
72, 5, 6wunop 9860 . 2 (𝜑 → ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ 𝑈)
81, 7syl5eqel 2911 1 (𝜑 → ⟨𝐴, 𝐵, 𝐶⟩ ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2166  cop 4404  cotp 4406  WUnicwun 9838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-ral 3123  df-rex 3124  df-v 3417  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-nul 4146  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-ot 4407  df-uni 4660  df-tr 4977  df-wun 9840
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator