![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wunot | Structured version Visualization version GIF version |
Description: A weak universe is closed under ordered triples. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wunop.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
wunop.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
wunot.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑈) |
Ref | Expression |
---|---|
wunot | ⊢ (𝜑 → ⟨𝐴, 𝐵, 𝐶⟩ ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ot 4637 | . 2 ⊢ ⟨𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ | |
2 | wun0.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
3 | wunop.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
4 | wunop.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑈) | |
5 | 2, 3, 4 | wunop 10716 | . . 3 ⊢ (𝜑 → ⟨𝐴, 𝐵⟩ ∈ 𝑈) |
6 | wunot.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑈) | |
7 | 2, 5, 6 | wunop 10716 | . 2 ⊢ (𝜑 → ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ 𝑈) |
8 | 1, 7 | eqeltrid 2837 | 1 ⊢ (𝜑 → ⟨𝐴, 𝐵, 𝐶⟩ ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ⟨cop 4634 ⟨cotp 4636 WUnicwun 10694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-ot 4637 df-uni 4909 df-tr 5266 df-wun 10696 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |