MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunot Structured version   Visualization version   GIF version

Theorem wunot 10652
Description: A weak universe is closed under ordered triples. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunop.2 (𝜑𝐴𝑈)
wunop.3 (𝜑𝐵𝑈)
wunot.3 (𝜑𝐶𝑈)
Assertion
Ref Expression
wunot (𝜑 → ⟨𝐴, 𝐵, 𝐶⟩ ∈ 𝑈)

Proof of Theorem wunot
StepHypRef Expression
1 df-ot 4594 . 2 𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶
2 wun0.1 . . 3 (𝜑𝑈 ∈ WUni)
3 wunop.2 . . . 4 (𝜑𝐴𝑈)
4 wunop.3 . . . 4 (𝜑𝐵𝑈)
52, 3, 4wunop 10651 . . 3 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ 𝑈)
6 wunot.3 . . 3 (𝜑𝐶𝑈)
72, 5, 6wunop 10651 . 2 (𝜑 → ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ 𝑈)
81, 7eqeltrid 2832 1 (𝜑 → ⟨𝐴, 𝐵, 𝐶⟩ ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cop 4591  cotp 4593  WUnicwun 10629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-ot 4594  df-uni 4868  df-tr 5210  df-wun 10631
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator