MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunop Structured version   Visualization version   GIF version

Theorem wunop 10613
Description: A weak universe is closed under ordered pairs. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunop.2 (𝜑𝐴𝑈)
wunop.3 (𝜑𝐵𝑈)
Assertion
Ref Expression
wunop (𝜑 → ⟨𝐴, 𝐵⟩ ∈ 𝑈)

Proof of Theorem wunop
StepHypRef Expression
1 wunop.2 . . 3 (𝜑𝐴𝑈)
2 wunop.3 . . 3 (𝜑𝐵𝑈)
3 dfopg 4820 . . 3 ((𝐴𝑈𝐵𝑈) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
41, 2, 3syl2anc 584 . 2 (𝜑 → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
5 wun0.1 . . 3 (𝜑𝑈 ∈ WUni)
65, 1wunsn 10607 . . 3 (𝜑 → {𝐴} ∈ 𝑈)
75, 1, 2wunpr 10600 . . 3 (𝜑 → {𝐴, 𝐵} ∈ 𝑈)
85, 6, 7wunpr 10600 . 2 (𝜑 → {{𝐴}, {𝐴, 𝐵}} ∈ 𝑈)
94, 8eqeltrd 2831 1 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  {csn 4573  {cpr 4575  cop 4579  WUnicwun 10591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-tr 5197  df-wun 10593
This theorem is referenced by:  wunot  10614  1strwunbndx  17136  wunress  17160  catcoppccl  18024  catcfuccl  18025  catcxpccl  18113
  Copyright terms: Public domain W3C validator