![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wunop | Structured version Visualization version GIF version |
Description: A weak universe is closed under ordered pairs. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wunop.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
wunop.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
Ref | Expression |
---|---|
wunop | ⊢ (𝜑 → ⟨𝐴, 𝐵⟩ ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wunop.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
2 | wunop.3 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑈) | |
3 | dfopg 4871 | . . 3 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}) | |
4 | 1, 2, 3 | syl2anc 584 | . 2 ⊢ (𝜑 → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}) |
5 | wun0.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
6 | 5, 1 | wunsn 10713 | . . 3 ⊢ (𝜑 → {𝐴} ∈ 𝑈) |
7 | 5, 1, 2 | wunpr 10706 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) |
8 | 5, 6, 7 | wunpr 10706 | . 2 ⊢ (𝜑 → {{𝐴}, {𝐴, 𝐵}} ∈ 𝑈) |
9 | 4, 8 | eqeltrd 2833 | 1 ⊢ (𝜑 → ⟨𝐴, 𝐵⟩ ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 {csn 4628 {cpr 4630 ⟨cop 4634 WUnicwun 10697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-tr 5266 df-wun 10699 |
This theorem is referenced by: wunot 10720 1strwunbndx 17167 wunress 17199 wunressOLD 17200 catcoppccl 18071 catcoppcclOLD 18072 catcfuccl 18073 catcfucclOLD 18074 catcxpccl 18163 catcxpcclOLD 18164 |
Copyright terms: Public domain | W3C validator |