MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunop Structured version   Visualization version   GIF version

Theorem wunop 9858
Description: A weak universe is closed under ordered pairs. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunop.2 (𝜑𝐴𝑈)
wunop.3 (𝜑𝐵𝑈)
Assertion
Ref Expression
wunop (𝜑 → ⟨𝐴, 𝐵⟩ ∈ 𝑈)

Proof of Theorem wunop
StepHypRef Expression
1 wunop.2 . . 3 (𝜑𝐴𝑈)
2 wunop.3 . . 3 (𝜑𝐵𝑈)
3 dfopg 4620 . . 3 ((𝐴𝑈𝐵𝑈) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
41, 2, 3syl2anc 581 . 2 (𝜑 → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
5 wun0.1 . . 3 (𝜑𝑈 ∈ WUni)
65, 1wunsn 9852 . . 3 (𝜑 → {𝐴} ∈ 𝑈)
75, 1, 2wunpr 9845 . . 3 (𝜑 → {𝐴, 𝐵} ∈ 𝑈)
85, 6, 7wunpr 9845 . 2 (𝜑 → {{𝐴}, {𝐴, 𝐵}} ∈ 𝑈)
94, 8eqeltrd 2905 1 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1658  wcel 2166  {csn 4396  {cpr 4398  cop 4402  WUnicwun 9836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-ral 3121  df-rex 3122  df-v 3415  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-nul 4144  df-if 4306  df-sn 4397  df-pr 4399  df-op 4403  df-uni 4658  df-tr 4975  df-wun 9838
This theorem is referenced by:  wunot  9859  wunress  16303  1strwunbndx  16339  catcoppccl  17109  catcfuccl  17110  catcxpccl  17199
  Copyright terms: Public domain W3C validator