![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wunop | Structured version Visualization version GIF version |
Description: A weak universe is closed under ordered pairs. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wunop.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
wunop.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
Ref | Expression |
---|---|
wunop | ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wunop.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
2 | wunop.3 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑈) | |
3 | dfopg 4620 | . . 3 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) | |
4 | 1, 2, 3 | syl2anc 581 | . 2 ⊢ (𝜑 → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) |
5 | wun0.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
6 | 5, 1 | wunsn 9852 | . . 3 ⊢ (𝜑 → {𝐴} ∈ 𝑈) |
7 | 5, 1, 2 | wunpr 9845 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) |
8 | 5, 6, 7 | wunpr 9845 | . 2 ⊢ (𝜑 → {{𝐴}, {𝐴, 𝐵}} ∈ 𝑈) |
9 | 4, 8 | eqeltrd 2905 | 1 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1658 ∈ wcel 2166 {csn 4396 {cpr 4398 〈cop 4402 WUnicwun 9836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-ral 3121 df-rex 3122 df-v 3415 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-nul 4144 df-if 4306 df-sn 4397 df-pr 4399 df-op 4403 df-uni 4658 df-tr 4975 df-wun 9838 |
This theorem is referenced by: wunot 9859 wunress 16303 1strwunbndx 16339 catcoppccl 17109 catcfuccl 17110 catcxpccl 17199 |
Copyright terms: Public domain | W3C validator |