MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunop Structured version   Visualization version   GIF version

Theorem wunop 10714
Description: A weak universe is closed under ordered pairs. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunop.2 (𝜑𝐴𝑈)
wunop.3 (𝜑𝐵𝑈)
Assertion
Ref Expression
wunop (𝜑 → ⟨𝐴, 𝐵⟩ ∈ 𝑈)

Proof of Theorem wunop
StepHypRef Expression
1 wunop.2 . . 3 (𝜑𝐴𝑈)
2 wunop.3 . . 3 (𝜑𝐵𝑈)
3 dfopg 4864 . . 3 ((𝐴𝑈𝐵𝑈) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
41, 2, 3syl2anc 583 . 2 (𝜑 → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
5 wun0.1 . . 3 (𝜑𝑈 ∈ WUni)
65, 1wunsn 10708 . . 3 (𝜑 → {𝐴} ∈ 𝑈)
75, 1, 2wunpr 10701 . . 3 (𝜑 → {𝐴, 𝐵} ∈ 𝑈)
85, 6, 7wunpr 10701 . 2 (𝜑 → {{𝐴}, {𝐴, 𝐵}} ∈ 𝑈)
94, 8eqeltrd 2825 1 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  {csn 4621  {cpr 4623  cop 4627  WUnicwun 10692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rex 3063  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-tr 5257  df-wun 10694
This theorem is referenced by:  wunot  10715  1strwunbndx  17164  wunress  17196  wunressOLD  17197  catcoppccl  18071  catcoppcclOLD  18072  catcfuccl  18073  catcfucclOLD  18074  catcxpccl  18163  catcxpcclOLD  18164
  Copyright terms: Public domain W3C validator