| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wunop | Structured version Visualization version GIF version | ||
| Description: A weak universe is closed under ordered pairs. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| wunop.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| wunop.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| wunop | ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wunop.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 2 | wunop.3 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑈) | |
| 3 | dfopg 4820 | . . 3 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) | |
| 4 | 1, 2, 3 | syl2anc 584 | . 2 ⊢ (𝜑 → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) |
| 5 | wun0.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 6 | 5, 1 | wunsn 10607 | . . 3 ⊢ (𝜑 → {𝐴} ∈ 𝑈) |
| 7 | 5, 1, 2 | wunpr 10600 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) |
| 8 | 5, 6, 7 | wunpr 10600 | . 2 ⊢ (𝜑 → {{𝐴}, {𝐴, 𝐵}} ∈ 𝑈) |
| 9 | 4, 8 | eqeltrd 2831 | 1 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {csn 4573 {cpr 4575 〈cop 4579 WUnicwun 10591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-tr 5197 df-wun 10593 |
| This theorem is referenced by: wunot 10614 1strwunbndx 17136 wunress 17160 catcoppccl 18024 catcfuccl 18025 catcxpccl 18113 |
| Copyright terms: Public domain | W3C validator |