MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunop Structured version   Visualization version   GIF version

Theorem wunop 10762
Description: A weak universe is closed under ordered pairs. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunop.2 (𝜑𝐴𝑈)
wunop.3 (𝜑𝐵𝑈)
Assertion
Ref Expression
wunop (𝜑 → ⟨𝐴, 𝐵⟩ ∈ 𝑈)

Proof of Theorem wunop
StepHypRef Expression
1 wunop.2 . . 3 (𝜑𝐴𝑈)
2 wunop.3 . . 3 (𝜑𝐵𝑈)
3 dfopg 4871 . . 3 ((𝐴𝑈𝐵𝑈) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
41, 2, 3syl2anc 584 . 2 (𝜑 → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
5 wun0.1 . . 3 (𝜑𝑈 ∈ WUni)
65, 1wunsn 10756 . . 3 (𝜑 → {𝐴} ∈ 𝑈)
75, 1, 2wunpr 10749 . . 3 (𝜑 → {𝐴, 𝐵} ∈ 𝑈)
85, 6, 7wunpr 10749 . 2 (𝜑 → {{𝐴}, {𝐴, 𝐵}} ∈ 𝑈)
94, 8eqeltrd 2841 1 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  {csn 4626  {cpr 4628  cop 4632  WUnicwun 10740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-tr 5260  df-wun 10742
This theorem is referenced by:  wunot  10763  1strwunbndx  17265  wunress  17295  wunressOLD  17296  catcoppccl  18162  catcfuccl  18163  catcxpccl  18252
  Copyright terms: Public domain W3C validator