| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wunop | Structured version Visualization version GIF version | ||
| Description: A weak universe is closed under ordered pairs. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| wunop.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| wunop.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| wunop | ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wunop.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 2 | wunop.3 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑈) | |
| 3 | dfopg 4847 | . . 3 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) | |
| 4 | 1, 2, 3 | syl2anc 584 | . 2 ⊢ (𝜑 → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) |
| 5 | wun0.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 6 | 5, 1 | wunsn 10730 | . . 3 ⊢ (𝜑 → {𝐴} ∈ 𝑈) |
| 7 | 5, 1, 2 | wunpr 10723 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) |
| 8 | 5, 6, 7 | wunpr 10723 | . 2 ⊢ (𝜑 → {{𝐴}, {𝐴, 𝐵}} ∈ 𝑈) |
| 9 | 4, 8 | eqeltrd 2834 | 1 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 {csn 4601 {cpr 4603 〈cop 4607 WUnicwun 10714 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-tr 5230 df-wun 10716 |
| This theorem is referenced by: wunot 10737 1strwunbndx 17246 wunress 17270 catcoppccl 18130 catcfuccl 18131 catcxpccl 18219 |
| Copyright terms: Public domain | W3C validator |