MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunxp Structured version   Visualization version   GIF version

Theorem wunxp 10411
Description: A weak universe is closed under cartesian products. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunop.2 (𝜑𝐴𝑈)
wunop.3 (𝜑𝐵𝑈)
Assertion
Ref Expression
wunxp (𝜑 → (𝐴 × 𝐵) ∈ 𝑈)

Proof of Theorem wunxp
StepHypRef Expression
1 wun0.1 . 2 (𝜑𝑈 ∈ WUni)
2 wunop.2 . . . . 5 (𝜑𝐴𝑈)
3 wunop.3 . . . . 5 (𝜑𝐵𝑈)
41, 2, 3wunun 10397 . . . 4 (𝜑 → (𝐴𝐵) ∈ 𝑈)
51, 4wunpw 10394 . . 3 (𝜑 → 𝒫 (𝐴𝐵) ∈ 𝑈)
61, 5wunpw 10394 . 2 (𝜑 → 𝒫 𝒫 (𝐴𝐵) ∈ 𝑈)
7 xpsspw 5708 . . 3 (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴𝐵)
87a1i 11 . 2 (𝜑 → (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴𝐵))
91, 6, 8wunss 10399 1 (𝜑 → (𝐴 × 𝐵) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cun 3881  wss 3883  𝒫 cpw 4530   × cxp 5578  WUnicwun 10387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-opab 5133  df-tr 5188  df-xp 5586  df-rel 5587  df-wun 10389
This theorem is referenced by:  wunpm  10412  wuncnv  10417  wunco  10420  wuntpos  10421  tskxp  10474  wuncn  10857  wunfunc  17530  wunfuncOLD  17531  wunnat  17588  wunnatOLD  17589  catcoppccl  17748  catcoppcclOLD  17749  catcfuccl  17750  catcfucclOLD  17751  catcxpccl  17840  catcxpcclOLD  17841
  Copyright terms: Public domain W3C validator