MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunxp Structured version   Visualization version   GIF version

Theorem wunxp 10615
Description: A weak universe is closed under cartesian products. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunop.2 (𝜑𝐴𝑈)
wunop.3 (𝜑𝐵𝑈)
Assertion
Ref Expression
wunxp (𝜑 → (𝐴 × 𝐵) ∈ 𝑈)

Proof of Theorem wunxp
StepHypRef Expression
1 wun0.1 . 2 (𝜑𝑈 ∈ WUni)
2 wunop.2 . . . . 5 (𝜑𝐴𝑈)
3 wunop.3 . . . . 5 (𝜑𝐵𝑈)
41, 2, 3wunun 10601 . . . 4 (𝜑 → (𝐴𝐵) ∈ 𝑈)
51, 4wunpw 10598 . . 3 (𝜑 → 𝒫 (𝐴𝐵) ∈ 𝑈)
61, 5wunpw 10598 . 2 (𝜑 → 𝒫 𝒫 (𝐴𝐵) ∈ 𝑈)
7 xpsspw 5749 . . 3 (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴𝐵)
87a1i 11 . 2 (𝜑 → (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴𝐵))
91, 6, 8wunss 10603 1 (𝜑 → (𝐴 × 𝐵) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  cun 3900  wss 3902  𝒫 cpw 4550   × cxp 5614  WUnicwun 10591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-opab 5154  df-tr 5199  df-xp 5622  df-rel 5623  df-wun 10593
This theorem is referenced by:  wunpm  10616  wuncnv  10621  wunco  10624  wuntpos  10625  tskxp  10678  wuncn  11061  wunfunc  17808  wunnat  17866  catcoppccl  18024  catcfuccl  18025  catcxpccl  18113
  Copyright terms: Public domain W3C validator