Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wunxp | Structured version Visualization version GIF version |
Description: A weak universe is closed under cartesian products. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wunop.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
wunop.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
Ref | Expression |
---|---|
wunxp | ⊢ (𝜑 → (𝐴 × 𝐵) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wun0.1 | . 2 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
2 | wunop.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
3 | wunop.3 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑈) | |
4 | 1, 2, 3 | wunun 10397 | . . . 4 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ 𝑈) |
5 | 1, 4 | wunpw 10394 | . . 3 ⊢ (𝜑 → 𝒫 (𝐴 ∪ 𝐵) ∈ 𝑈) |
6 | 1, 5 | wunpw 10394 | . 2 ⊢ (𝜑 → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ 𝑈) |
7 | xpsspw 5708 | . . 3 ⊢ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) | |
8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵)) |
9 | 1, 6, 8 | wunss 10399 | 1 ⊢ (𝜑 → (𝐴 × 𝐵) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∪ cun 3881 ⊆ wss 3883 𝒫 cpw 4530 × cxp 5578 WUnicwun 10387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-opab 5133 df-tr 5188 df-xp 5586 df-rel 5587 df-wun 10389 |
This theorem is referenced by: wunpm 10412 wuncnv 10417 wunco 10420 wuntpos 10421 tskxp 10474 wuncn 10857 wunfunc 17530 wunfuncOLD 17531 wunnat 17588 wunnatOLD 17589 catcoppccl 17748 catcoppcclOLD 17749 catcfuccl 17750 catcfucclOLD 17751 catcxpccl 17840 catcxpcclOLD 17841 |
Copyright terms: Public domain | W3C validator |