![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wunxp | Structured version Visualization version GIF version |
Description: A weak universe is closed under cartesian products. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wunop.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
wunop.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
Ref | Expression |
---|---|
wunxp | ⊢ (𝜑 → (𝐴 × 𝐵) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wun0.1 | . 2 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
2 | wunop.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
3 | wunop.3 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑈) | |
4 | 1, 2, 3 | wunun 9820 | . . . 4 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ 𝑈) |
5 | 1, 4 | wunpw 9817 | . . 3 ⊢ (𝜑 → 𝒫 (𝐴 ∪ 𝐵) ∈ 𝑈) |
6 | 1, 5 | wunpw 9817 | . 2 ⊢ (𝜑 → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ 𝑈) |
7 | xpsspw 5436 | . . 3 ⊢ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) | |
8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵)) |
9 | 1, 6, 8 | wunss 9822 | 1 ⊢ (𝜑 → (𝐴 × 𝐵) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 ∪ cun 3767 ⊆ wss 3769 𝒫 cpw 4349 × cxp 5310 WUnicwun 9810 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-opab 4906 df-tr 4946 df-xp 5318 df-rel 5319 df-wun 9812 |
This theorem is referenced by: wunpm 9835 wuncnv 9840 wunco 9843 wuntpos 9844 tskxp 9897 wuncn 10279 wunfunc 16873 wunnat 16930 catcoppccl 17072 catcfuccl 17073 catcxpccl 17162 |
Copyright terms: Public domain | W3C validator |