![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wunxp | Structured version Visualization version GIF version |
Description: A weak universe is closed under cartesian products. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wunop.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
wunop.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
Ref | Expression |
---|---|
wunxp | ⊢ (𝜑 → (𝐴 × 𝐵) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wun0.1 | . 2 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
2 | wunop.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
3 | wunop.3 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑈) | |
4 | 1, 2, 3 | wunun 10779 | . . . 4 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ 𝑈) |
5 | 1, 4 | wunpw 10776 | . . 3 ⊢ (𝜑 → 𝒫 (𝐴 ∪ 𝐵) ∈ 𝑈) |
6 | 1, 5 | wunpw 10776 | . 2 ⊢ (𝜑 → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ 𝑈) |
7 | xpsspw 5833 | . . 3 ⊢ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) | |
8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵)) |
9 | 1, 6, 8 | wunss 10781 | 1 ⊢ (𝜑 → (𝐴 × 𝐵) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∪ cun 3974 ⊆ wss 3976 𝒫 cpw 4622 × cxp 5698 WUnicwun 10769 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-opab 5229 df-tr 5284 df-xp 5706 df-rel 5707 df-wun 10771 |
This theorem is referenced by: wunpm 10794 wuncnv 10799 wunco 10802 wuntpos 10803 tskxp 10856 wuncn 11239 wunfunc 17965 wunfuncOLD 17966 wunnat 18024 wunnatOLD 18025 catcoppccl 18184 catcoppcclOLD 18185 catcfuccl 18186 catcfucclOLD 18187 catcxpccl 18276 catcxpcclOLD 18277 |
Copyright terms: Public domain | W3C validator |