MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunxp Structured version   Visualization version   GIF version

Theorem wunxp 10684
Description: A weak universe is closed under cartesian products. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunop.2 (𝜑𝐴𝑈)
wunop.3 (𝜑𝐵𝑈)
Assertion
Ref Expression
wunxp (𝜑 → (𝐴 × 𝐵) ∈ 𝑈)

Proof of Theorem wunxp
StepHypRef Expression
1 wun0.1 . 2 (𝜑𝑈 ∈ WUni)
2 wunop.2 . . . . 5 (𝜑𝐴𝑈)
3 wunop.3 . . . . 5 (𝜑𝐵𝑈)
41, 2, 3wunun 10670 . . . 4 (𝜑 → (𝐴𝐵) ∈ 𝑈)
51, 4wunpw 10667 . . 3 (𝜑 → 𝒫 (𝐴𝐵) ∈ 𝑈)
61, 5wunpw 10667 . 2 (𝜑 → 𝒫 𝒫 (𝐴𝐵) ∈ 𝑈)
7 xpsspw 5775 . . 3 (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴𝐵)
87a1i 11 . 2 (𝜑 → (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴𝐵))
91, 6, 8wunss 10672 1 (𝜑 → (𝐴 × 𝐵) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cun 3915  wss 3917  𝒫 cpw 4566   × cxp 5639  WUnicwun 10660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-opab 5173  df-tr 5218  df-xp 5647  df-rel 5648  df-wun 10662
This theorem is referenced by:  wunpm  10685  wuncnv  10690  wunco  10693  wuntpos  10694  tskxp  10747  wuncn  11130  wunfunc  17870  wunnat  17928  catcoppccl  18086  catcfuccl  18087  catcxpccl  18175
  Copyright terms: Public domain W3C validator