![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wunxp | Structured version Visualization version GIF version |
Description: A weak universe is closed under cartesian products. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wunop.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
wunop.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
Ref | Expression |
---|---|
wunxp | ⊢ (𝜑 → (𝐴 × 𝐵) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wun0.1 | . 2 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
2 | wunop.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
3 | wunop.3 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑈) | |
4 | 1, 2, 3 | wunun 10748 | . . . 4 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ 𝑈) |
5 | 1, 4 | wunpw 10745 | . . 3 ⊢ (𝜑 → 𝒫 (𝐴 ∪ 𝐵) ∈ 𝑈) |
6 | 1, 5 | wunpw 10745 | . 2 ⊢ (𝜑 → 𝒫 𝒫 (𝐴 ∪ 𝐵) ∈ 𝑈) |
7 | xpsspw 5822 | . . 3 ⊢ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) | |
8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵)) |
9 | 1, 6, 8 | wunss 10750 | 1 ⊢ (𝜑 → (𝐴 × 𝐵) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∪ cun 3961 ⊆ wss 3963 𝒫 cpw 4605 × cxp 5687 WUnicwun 10738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-opab 5211 df-tr 5266 df-xp 5695 df-rel 5696 df-wun 10740 |
This theorem is referenced by: wunpm 10763 wuncnv 10768 wunco 10771 wuntpos 10772 tskxp 10825 wuncn 11208 wunfunc 17952 wunfuncOLD 17953 wunnat 18011 wunnatOLD 18012 catcoppccl 18171 catcoppcclOLD 18172 catcfuccl 18173 catcfucclOLD 18174 catcxpccl 18263 catcxpcclOLD 18264 |
Copyright terms: Public domain | W3C validator |