Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wunres | Structured version Visualization version GIF version |
Description: A weak universe is closed under restrictions. (Contributed by Mario Carneiro, 12-Jan-2017.) |
Ref | Expression |
---|---|
wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wunop.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
Ref | Expression |
---|---|
wunres | ⊢ (𝜑 → (𝐴 ↾ 𝐵) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wun0.1 | . 2 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
2 | wunop.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
3 | resss 5916 | . . 3 ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → (𝐴 ↾ 𝐵) ⊆ 𝐴) |
5 | 1, 2, 4 | wunss 10468 | 1 ⊢ (𝜑 → (𝐴 ↾ 𝐵) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ⊆ wss 3887 ↾ cres 5591 WUnicwun 10456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 df-pw 4535 df-uni 4840 df-tr 5192 df-res 5601 df-wun 10458 |
This theorem is referenced by: wunsets 16878 |
Copyright terms: Public domain | W3C validator |