MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunres Structured version   Visualization version   GIF version

Theorem wunres 10418
Description: A weak universe is closed under restrictions. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunop.2 (𝜑𝐴𝑈)
Assertion
Ref Expression
wunres (𝜑 → (𝐴𝐵) ∈ 𝑈)

Proof of Theorem wunres
StepHypRef Expression
1 wun0.1 . 2 (𝜑𝑈 ∈ WUni)
2 wunop.2 . 2 (𝜑𝐴𝑈)
3 resss 5905 . . 3 (𝐴𝐵) ⊆ 𝐴
43a1i 11 . 2 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
51, 2, 4wunss 10399 1 (𝜑 → (𝐴𝐵) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wss 3883  cres 5582  WUnicwun 10387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-sep 5218
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rab 3072  df-v 3424  df-in 3890  df-ss 3900  df-pw 4532  df-uni 4837  df-tr 5188  df-res 5592  df-wun 10389
This theorem is referenced by:  wunsets  16806
  Copyright terms: Public domain W3C validator