MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunres Structured version   Visualization version   GIF version

Theorem wunres 10345
Description: A weak universe is closed under restrictions. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunop.2 (𝜑𝐴𝑈)
Assertion
Ref Expression
wunres (𝜑 → (𝐴𝐵) ∈ 𝑈)

Proof of Theorem wunres
StepHypRef Expression
1 wun0.1 . 2 (𝜑𝑈 ∈ WUni)
2 wunop.2 . 2 (𝜑𝐴𝑈)
3 resss 5876 . . 3 (𝐴𝐵) ⊆ 𝐴
43a1i 11 . 2 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
51, 2, 4wunss 10326 1 (𝜑 → (𝐴𝐵) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110  wss 3866  cres 5553  WUnicwun 10314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-11 2158  ax-ext 2708  ax-sep 5192
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1091  df-tru 1546  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3066  df-rab 3070  df-v 3410  df-in 3873  df-ss 3883  df-pw 4515  df-uni 4820  df-tr 5162  df-res 5563  df-wun 10316
This theorem is referenced by:  wunsets  16730
  Copyright terms: Public domain W3C validator