MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunres Structured version   Visualization version   GIF version

Theorem wunres 10750
Description: A weak universe is closed under restrictions. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunop.2 (𝜑𝐴𝑈)
Assertion
Ref Expression
wunres (𝜑 → (𝐴𝐵) ∈ 𝑈)

Proof of Theorem wunres
StepHypRef Expression
1 wun0.1 . 2 (𝜑𝑈 ∈ WUni)
2 wunop.2 . 2 (𝜑𝐴𝑈)
3 resss 5993 . . 3 (𝐴𝐵) ⊆ 𝐴
43a1i 11 . 2 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
51, 2, 4wunss 10731 1 (𝜑 → (𝐴𝐵) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wss 3931  cres 5661  WUnicwun 10719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-in 3938  df-ss 3948  df-pw 4582  df-uni 4889  df-tr 5235  df-res 5671  df-wun 10721
This theorem is referenced by:  wunsets  17201
  Copyright terms: Public domain W3C validator