| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wunres | Structured version Visualization version GIF version | ||
| Description: A weak universe is closed under restrictions. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| Ref | Expression |
|---|---|
| wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| wunop.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| wunres | ⊢ (𝜑 → (𝐴 ↾ 𝐵) ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wun0.1 | . 2 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 2 | wunop.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 3 | resss 5993 | . . 3 ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → (𝐴 ↾ 𝐵) ⊆ 𝐴) |
| 5 | 1, 2, 4 | wunss 10731 | 1 ⊢ (𝜑 → (𝐴 ↾ 𝐵) ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3931 ↾ cres 5661 WUnicwun 10719 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-in 3938 df-ss 3948 df-pw 4582 df-uni 4889 df-tr 5235 df-res 5671 df-wun 10721 |
| This theorem is referenced by: wunsets 17201 |
| Copyright terms: Public domain | W3C validator |