MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wuncnv Structured version   Visualization version   GIF version

Theorem wuncnv 10587
Description: A weak universe is closed under the converse operator. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunop.2 (𝜑𝐴𝑈)
Assertion
Ref Expression
wuncnv (𝜑𝐴𝑈)

Proof of Theorem wuncnv
StepHypRef Expression
1 wun0.1 . 2 (𝜑𝑈 ∈ WUni)
2 wunop.2 . . . 4 (𝜑𝐴𝑈)
31, 2wunrn 10586 . . 3 (𝜑 → ran 𝐴𝑈)
41, 2wundm 10585 . . 3 (𝜑 → dom 𝐴𝑈)
51, 3, 4wunxp 10581 . 2 (𝜑 → (ran 𝐴 × dom 𝐴) ∈ 𝑈)
6 cnvssrndm 6209 . . 3 𝐴 ⊆ (ran 𝐴 × dom 𝐴)
76a1i 11 . 2 (𝜑𝐴 ⊆ (ran 𝐴 × dom 𝐴))
81, 5, 7wunss 10569 1 (𝜑𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  wss 3898   × cxp 5618  ccnv 5619  dom cdm 5620  ran crn 5621  WUnicwun 10557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pr 5372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-br 5093  df-opab 5155  df-tr 5210  df-xp 5626  df-rel 5627  df-cnv 5628  df-dm 5630  df-rn 5631  df-wun 10559
This theorem is referenced by:  wuntpos  10591  catcoppccl  17929  catcoppcclOLD  17930
  Copyright terms: Public domain W3C validator