MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wuncnv Structured version   Visualization version   GIF version

Theorem wuncnv 10486
Description: A weak universe is closed under the converse operator. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunop.2 (𝜑𝐴𝑈)
Assertion
Ref Expression
wuncnv (𝜑𝐴𝑈)

Proof of Theorem wuncnv
StepHypRef Expression
1 wun0.1 . 2 (𝜑𝑈 ∈ WUni)
2 wunop.2 . . . 4 (𝜑𝐴𝑈)
31, 2wunrn 10485 . . 3 (𝜑 → ran 𝐴𝑈)
41, 2wundm 10484 . . 3 (𝜑 → dom 𝐴𝑈)
51, 3, 4wunxp 10480 . 2 (𝜑 → (ran 𝐴 × dom 𝐴) ∈ 𝑈)
6 cnvssrndm 6174 . . 3 𝐴 ⊆ (ran 𝐴 × dom 𝐴)
76a1i 11 . 2 (𝜑𝐴 ⊆ (ran 𝐴 × dom 𝐴))
81, 5, 7wunss 10468 1 (𝜑𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wss 3887   × cxp 5587  ccnv 5588  dom cdm 5589  ran crn 5590  WUnicwun 10456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-xp 5595  df-rel 5596  df-cnv 5597  df-dm 5599  df-rn 5600  df-wun 10458
This theorem is referenced by:  wuntpos  10490  catcoppccl  17832  catcoppcclOLD  17833
  Copyright terms: Public domain W3C validator