Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wuncnv | Structured version Visualization version GIF version |
Description: A weak universe is closed under the converse operator. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wunop.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
Ref | Expression |
---|---|
wuncnv | ⊢ (𝜑 → ◡𝐴 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wun0.1 | . 2 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
2 | wunop.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
3 | 1, 2 | wunrn 10416 | . . 3 ⊢ (𝜑 → ran 𝐴 ∈ 𝑈) |
4 | 1, 2 | wundm 10415 | . . 3 ⊢ (𝜑 → dom 𝐴 ∈ 𝑈) |
5 | 1, 3, 4 | wunxp 10411 | . 2 ⊢ (𝜑 → (ran 𝐴 × dom 𝐴) ∈ 𝑈) |
6 | cnvssrndm 6163 | . . 3 ⊢ ◡𝐴 ⊆ (ran 𝐴 × dom 𝐴) | |
7 | 6 | a1i 11 | . 2 ⊢ (𝜑 → ◡𝐴 ⊆ (ran 𝐴 × dom 𝐴)) |
8 | 1, 5, 7 | wunss 10399 | 1 ⊢ (𝜑 → ◡𝐴 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3883 × cxp 5578 ◡ccnv 5579 dom cdm 5580 ran crn 5581 WUnicwun 10387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-wun 10389 |
This theorem is referenced by: wuntpos 10421 catcoppccl 17748 catcoppcclOLD 17749 |
Copyright terms: Public domain | W3C validator |