MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunsets Structured version   Visualization version   GIF version

Theorem wunsets 17215
Description: Closure of structure replacement in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
wunsets.1 (𝜑𝑈 ∈ WUni)
wunsets.2 (𝜑𝑆𝑈)
wunsets.3 (𝜑𝐴𝑈)
Assertion
Ref Expression
wunsets (𝜑 → (𝑆 sSet 𝐴) ∈ 𝑈)

Proof of Theorem wunsets
StepHypRef Expression
1 wunsets.2 . . 3 (𝜑𝑆𝑈)
2 wunsets.3 . . 3 (𝜑𝐴𝑈)
3 setsvalg 17204 . . 3 ((𝑆𝑈𝐴𝑈) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}))
41, 2, 3syl2anc 584 . 2 (𝜑 → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}))
5 wunsets.1 . . 3 (𝜑𝑈 ∈ WUni)
65, 1wunres 10772 . . 3 (𝜑 → (𝑆 ↾ (V ∖ dom {𝐴})) ∈ 𝑈)
75, 2wunsn 10757 . . 3 (𝜑 → {𝐴} ∈ 𝑈)
85, 6, 7wunun 10751 . 2 (𝜑 → ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}) ∈ 𝑈)
94, 8eqeltrd 2840 1 (𝜑 → (𝑆 sSet 𝐴) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  Vcvv 3479  cdif 3947  cun 3948  {csn 4625  dom cdm 5684  cres 5686  (class class class)co 7432  WUnicwun 10741   sSet csts 17201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-tr 5259  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-res 5696  df-iota 6513  df-fun 6562  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-wun 10743  df-sets 17202
This theorem is referenced by:  wunress  17296  wunressOLD  17297  catcoppccl  18163
  Copyright terms: Public domain W3C validator