| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wunsets | Structured version Visualization version GIF version | ||
| Description: Closure of structure replacement in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| Ref | Expression |
|---|---|
| wunsets.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| wunsets.2 | ⊢ (𝜑 → 𝑆 ∈ 𝑈) |
| wunsets.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| wunsets | ⊢ (𝜑 → (𝑆 sSet 𝐴) ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wunsets.2 | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑈) | |
| 2 | wunsets.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 3 | setsvalg 17077 | . . 3 ⊢ ((𝑆 ∈ 𝑈 ∧ 𝐴 ∈ 𝑈) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴})) | |
| 4 | 1, 2, 3 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴})) |
| 5 | wunsets.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 6 | 5, 1 | wunres 10622 | . . 3 ⊢ (𝜑 → (𝑆 ↾ (V ∖ dom {𝐴})) ∈ 𝑈) |
| 7 | 5, 2 | wunsn 10607 | . . 3 ⊢ (𝜑 → {𝐴} ∈ 𝑈) |
| 8 | 5, 6, 7 | wunun 10601 | . 2 ⊢ (𝜑 → ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}) ∈ 𝑈) |
| 9 | 4, 8 | eqeltrd 2831 | 1 ⊢ (𝜑 → (𝑆 sSet 𝐴) ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∖ cdif 3894 ∪ cun 3895 {csn 4573 dom cdm 5614 ↾ cres 5616 (class class class)co 7346 WUnicwun 10591 sSet csts 17074 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-res 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-wun 10593 df-sets 17075 |
| This theorem is referenced by: wunress 17160 catcoppccl 18024 |
| Copyright terms: Public domain | W3C validator |