MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunsets Structured version   Visualization version   GIF version

Theorem wunsets 16806
Description: Closure of structure replacement in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
wunsets.1 (𝜑𝑈 ∈ WUni)
wunsets.2 (𝜑𝑆𝑈)
wunsets.3 (𝜑𝐴𝑈)
Assertion
Ref Expression
wunsets (𝜑 → (𝑆 sSet 𝐴) ∈ 𝑈)

Proof of Theorem wunsets
StepHypRef Expression
1 wunsets.2 . . 3 (𝜑𝑆𝑈)
2 wunsets.3 . . 3 (𝜑𝐴𝑈)
3 setsvalg 16795 . . 3 ((𝑆𝑈𝐴𝑈) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}))
41, 2, 3syl2anc 583 . 2 (𝜑 → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}))
5 wunsets.1 . . 3 (𝜑𝑈 ∈ WUni)
65, 1wunres 10418 . . 3 (𝜑 → (𝑆 ↾ (V ∖ dom {𝐴})) ∈ 𝑈)
75, 2wunsn 10403 . . 3 (𝜑 → {𝐴} ∈ 𝑈)
85, 6, 7wunun 10397 . 2 (𝜑 → ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}) ∈ 𝑈)
94, 8eqeltrd 2839 1 (𝜑 → (𝑆 sSet 𝐴) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  cdif 3880  cun 3881  {csn 4558  dom cdm 5580  cres 5582  (class class class)co 7255  WUnicwun 10387   sSet csts 16792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-res 5592  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-wun 10389  df-sets 16793
This theorem is referenced by:  wunress  16886  wunressOLD  16887  catcoppccl  17748  catcoppcclOLD  17749
  Copyright terms: Public domain W3C validator