MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunsets Structured version   Visualization version   GIF version

Theorem wunsets 17109
Description: Closure of structure replacement in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
wunsets.1 (𝜑𝑈 ∈ WUni)
wunsets.2 (𝜑𝑆𝑈)
wunsets.3 (𝜑𝐴𝑈)
Assertion
Ref Expression
wunsets (𝜑 → (𝑆 sSet 𝐴) ∈ 𝑈)

Proof of Theorem wunsets
StepHypRef Expression
1 wunsets.2 . . 3 (𝜑𝑆𝑈)
2 wunsets.3 . . 3 (𝜑𝐴𝑈)
3 setsvalg 17098 . . 3 ((𝑆𝑈𝐴𝑈) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}))
41, 2, 3syl2anc 584 . 2 (𝜑 → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}))
5 wunsets.1 . . 3 (𝜑𝑈 ∈ WUni)
65, 1wunres 10725 . . 3 (𝜑 → (𝑆 ↾ (V ∖ dom {𝐴})) ∈ 𝑈)
75, 2wunsn 10710 . . 3 (𝜑 → {𝐴} ∈ 𝑈)
85, 6, 7wunun 10704 . 2 (𝜑 → ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}) ∈ 𝑈)
94, 8eqeltrd 2833 1 (𝜑 → (𝑆 sSet 𝐴) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  Vcvv 3474  cdif 3945  cun 3946  {csn 4628  dom cdm 5676  cres 5678  (class class class)co 7408  WUnicwun 10694   sSet csts 17095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-res 5688  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-wun 10696  df-sets 17096
This theorem is referenced by:  wunress  17194  wunressOLD  17195  catcoppccl  18066  catcoppcclOLD  18067
  Copyright terms: Public domain W3C validator