Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wunsets | Structured version Visualization version GIF version |
Description: Closure of structure replacement in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.) |
Ref | Expression |
---|---|
wunsets.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wunsets.2 | ⊢ (𝜑 → 𝑆 ∈ 𝑈) |
wunsets.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
Ref | Expression |
---|---|
wunsets | ⊢ (𝜑 → (𝑆 sSet 𝐴) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wunsets.2 | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑈) | |
2 | wunsets.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
3 | setsvalg 16867 | . . 3 ⊢ ((𝑆 ∈ 𝑈 ∧ 𝐴 ∈ 𝑈) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴})) | |
4 | 1, 2, 3 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴})) |
5 | wunsets.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
6 | 5, 1 | wunres 10487 | . . 3 ⊢ (𝜑 → (𝑆 ↾ (V ∖ dom {𝐴})) ∈ 𝑈) |
7 | 5, 2 | wunsn 10472 | . . 3 ⊢ (𝜑 → {𝐴} ∈ 𝑈) |
8 | 5, 6, 7 | wunun 10466 | . 2 ⊢ (𝜑 → ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}) ∈ 𝑈) |
9 | 4, 8 | eqeltrd 2839 | 1 ⊢ (𝜑 → (𝑆 sSet 𝐴) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∖ cdif 3884 ∪ cun 3885 {csn 4561 dom cdm 5589 ↾ cres 5591 (class class class)co 7275 WUnicwun 10456 sSet csts 16864 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-res 5601 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-wun 10458 df-sets 16865 |
This theorem is referenced by: wunress 16960 wunressOLD 16961 catcoppccl 17832 catcoppcclOLD 17833 |
Copyright terms: Public domain | W3C validator |