MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunsets Structured version   Visualization version   GIF version

Theorem wunsets 17147
Description: Closure of structure replacement in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
wunsets.1 (𝜑𝑈 ∈ WUni)
wunsets.2 (𝜑𝑆𝑈)
wunsets.3 (𝜑𝐴𝑈)
Assertion
Ref Expression
wunsets (𝜑 → (𝑆 sSet 𝐴) ∈ 𝑈)

Proof of Theorem wunsets
StepHypRef Expression
1 wunsets.2 . . 3 (𝜑𝑆𝑈)
2 wunsets.3 . . 3 (𝜑𝐴𝑈)
3 setsvalg 17136 . . 3 ((𝑆𝑈𝐴𝑈) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}))
41, 2, 3syl2anc 584 . 2 (𝜑 → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}))
5 wunsets.1 . . 3 (𝜑𝑈 ∈ WUni)
65, 1wunres 10684 . . 3 (𝜑 → (𝑆 ↾ (V ∖ dom {𝐴})) ∈ 𝑈)
75, 2wunsn 10669 . . 3 (𝜑 → {𝐴} ∈ 𝑈)
85, 6, 7wunun 10663 . 2 (𝜑 → ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}) ∈ 𝑈)
94, 8eqeltrd 2828 1 (𝜑 → (𝑆 sSet 𝐴) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  cdif 3911  cun 3912  {csn 4589  dom cdm 5638  cres 5640  (class class class)co 7387  WUnicwun 10653   sSet csts 17133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-res 5650  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-wun 10655  df-sets 17134
This theorem is referenced by:  wunress  17219  catcoppccl  18079
  Copyright terms: Public domain W3C validator