Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wunsets | Structured version Visualization version GIF version |
Description: Closure of structure replacement in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.) |
Ref | Expression |
---|---|
wunsets.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wunsets.2 | ⊢ (𝜑 → 𝑆 ∈ 𝑈) |
wunsets.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
Ref | Expression |
---|---|
wunsets | ⊢ (𝜑 → (𝑆 sSet 𝐴) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wunsets.2 | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑈) | |
2 | wunsets.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
3 | setsvalg 16795 | . . 3 ⊢ ((𝑆 ∈ 𝑈 ∧ 𝐴 ∈ 𝑈) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴})) | |
4 | 1, 2, 3 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴})) |
5 | wunsets.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
6 | 5, 1 | wunres 10418 | . . 3 ⊢ (𝜑 → (𝑆 ↾ (V ∖ dom {𝐴})) ∈ 𝑈) |
7 | 5, 2 | wunsn 10403 | . . 3 ⊢ (𝜑 → {𝐴} ∈ 𝑈) |
8 | 5, 6, 7 | wunun 10397 | . 2 ⊢ (𝜑 → ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}) ∈ 𝑈) |
9 | 4, 8 | eqeltrd 2839 | 1 ⊢ (𝜑 → (𝑆 sSet 𝐴) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∖ cdif 3880 ∪ cun 3881 {csn 4558 dom cdm 5580 ↾ cres 5582 (class class class)co 7255 WUnicwun 10387 sSet csts 16792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-res 5592 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-wun 10389 df-sets 16793 |
This theorem is referenced by: wunress 16886 wunressOLD 16887 catcoppccl 17748 catcoppcclOLD 17749 |
Copyright terms: Public domain | W3C validator |