| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wunsets | Structured version Visualization version GIF version | ||
| Description: Closure of structure replacement in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| Ref | Expression |
|---|---|
| wunsets.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| wunsets.2 | ⊢ (𝜑 → 𝑆 ∈ 𝑈) |
| wunsets.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| wunsets | ⊢ (𝜑 → (𝑆 sSet 𝐴) ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wunsets.2 | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑈) | |
| 2 | wunsets.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 3 | setsvalg 17077 | . . 3 ⊢ ((𝑆 ∈ 𝑈 ∧ 𝐴 ∈ 𝑈) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴})) | |
| 4 | 1, 2, 3 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴})) |
| 5 | wunsets.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 6 | 5, 1 | wunres 10625 | . . 3 ⊢ (𝜑 → (𝑆 ↾ (V ∖ dom {𝐴})) ∈ 𝑈) |
| 7 | 5, 2 | wunsn 10610 | . . 3 ⊢ (𝜑 → {𝐴} ∈ 𝑈) |
| 8 | 5, 6, 7 | wunun 10604 | . 2 ⊢ (𝜑 → ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}) ∈ 𝑈) |
| 9 | 4, 8 | eqeltrd 2828 | 1 ⊢ (𝜑 → (𝑆 sSet 𝐴) ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∖ cdif 3900 ∪ cun 3901 {csn 4577 dom cdm 5619 ↾ cres 5621 (class class class)co 7349 WUnicwun 10594 sSet csts 17074 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-tr 5200 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-res 5631 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-wun 10596 df-sets 17075 |
| This theorem is referenced by: wunress 17160 catcoppccl 18024 |
| Copyright terms: Public domain | W3C validator |