MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunsets Structured version   Visualization version   GIF version

Theorem wunsets 17088
Description: Closure of structure replacement in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
wunsets.1 (𝜑𝑈 ∈ WUni)
wunsets.2 (𝜑𝑆𝑈)
wunsets.3 (𝜑𝐴𝑈)
Assertion
Ref Expression
wunsets (𝜑 → (𝑆 sSet 𝐴) ∈ 𝑈)

Proof of Theorem wunsets
StepHypRef Expression
1 wunsets.2 . . 3 (𝜑𝑆𝑈)
2 wunsets.3 . . 3 (𝜑𝐴𝑈)
3 setsvalg 17077 . . 3 ((𝑆𝑈𝐴𝑈) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}))
41, 2, 3syl2anc 584 . 2 (𝜑 → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}))
5 wunsets.1 . . 3 (𝜑𝑈 ∈ WUni)
65, 1wunres 10625 . . 3 (𝜑 → (𝑆 ↾ (V ∖ dom {𝐴})) ∈ 𝑈)
75, 2wunsn 10610 . . 3 (𝜑 → {𝐴} ∈ 𝑈)
85, 6, 7wunun 10604 . 2 (𝜑 → ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}) ∈ 𝑈)
94, 8eqeltrd 2828 1 (𝜑 → (𝑆 sSet 𝐴) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3436  cdif 3900  cun 3901  {csn 4577  dom cdm 5619  cres 5621  (class class class)co 7349  WUnicwun 10594   sSet csts 17074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-tr 5200  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-res 5631  df-iota 6438  df-fun 6484  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-wun 10596  df-sets 17075
This theorem is referenced by:  wunress  17160  catcoppccl  18024
  Copyright terms: Public domain W3C validator