| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wunsets | Structured version Visualization version GIF version | ||
| Description: Closure of structure replacement in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| Ref | Expression |
|---|---|
| wunsets.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| wunsets.2 | ⊢ (𝜑 → 𝑆 ∈ 𝑈) |
| wunsets.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| wunsets | ⊢ (𝜑 → (𝑆 sSet 𝐴) ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wunsets.2 | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑈) | |
| 2 | wunsets.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 3 | setsvalg 17112 | . . 3 ⊢ ((𝑆 ∈ 𝑈 ∧ 𝐴 ∈ 𝑈) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴})) | |
| 4 | 1, 2, 3 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴})) |
| 5 | wunsets.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 6 | 5, 1 | wunres 10660 | . . 3 ⊢ (𝜑 → (𝑆 ↾ (V ∖ dom {𝐴})) ∈ 𝑈) |
| 7 | 5, 2 | wunsn 10645 | . . 3 ⊢ (𝜑 → {𝐴} ∈ 𝑈) |
| 8 | 5, 6, 7 | wunun 10639 | . 2 ⊢ (𝜑 → ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴}) ∈ 𝑈) |
| 9 | 4, 8 | eqeltrd 2828 | 1 ⊢ (𝜑 → (𝑆 sSet 𝐴) ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∖ cdif 3908 ∪ cun 3909 {csn 4585 dom cdm 5631 ↾ cres 5633 (class class class)co 7369 WUnicwun 10629 sSet csts 17109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-tr 5210 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-res 5643 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-wun 10631 df-sets 17110 |
| This theorem is referenced by: wunress 17195 catcoppccl 18059 |
| Copyright terms: Public domain | W3C validator |