![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wunfv | Structured version Visualization version GIF version |
Description: A weak universe is closed under the function value operator. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wunop.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
Ref | Expression |
---|---|
wunfv | ⊢ (𝜑 → (𝐴‘𝐵) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wun0.1 | . 2 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
2 | wunop.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
3 | 1, 2 | wunrn 10767 | . . 3 ⊢ (𝜑 → ran 𝐴 ∈ 𝑈) |
4 | 1, 3 | wununi 10744 | . 2 ⊢ (𝜑 → ∪ ran 𝐴 ∈ 𝑈) |
5 | fvssunirn 6940 | . . 3 ⊢ (𝐴‘𝐵) ⊆ ∪ ran 𝐴 | |
6 | 5 | a1i 11 | . 2 ⊢ (𝜑 → (𝐴‘𝐵) ⊆ ∪ ran 𝐴) |
7 | 1, 4, 6 | wunss 10750 | 1 ⊢ (𝜑 → (𝐴‘𝐵) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ⊆ wss 3963 ∪ cuni 4912 ran crn 5690 ‘cfv 6563 WUnicwun 10738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-tr 5266 df-cnv 5697 df-dm 5699 df-rn 5700 df-iota 6516 df-fv 6571 df-wun 10740 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |