MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem12 Structured version   Visualization version   GIF version

Theorem rpnnen2lem12 16010
Description: Lemma for rpnnen2 16011. (Contributed by Mario Carneiro, 13-May-2013.)
Hypothesis
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
Assertion
Ref Expression
rpnnen2lem12 𝒫 ℕ ≼ (0[,]1)
Distinct variable group:   𝑥,𝑛
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem rpnnen2lem12
Dummy variables 𝑚 𝑦 𝑧 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7349 . 2 (0[,]1) ∈ V
2 elpwi 4551 . . . . 5 (𝑦 ∈ 𝒫 ℕ → 𝑦 ⊆ ℕ)
3 nnuz 12700 . . . . . . 7 ℕ = (ℤ‘1)
43sumeq1i 15486 . . . . . 6 Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ (ℤ‘1)((𝐹𝑦)‘𝑘)
5 1nn 12063 . . . . . . 7 1 ∈ ℕ
6 rpnnen2.1 . . . . . . . 8 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
76rpnnen2lem6 16004 . . . . . . 7 ((𝑦 ⊆ ℕ ∧ 1 ∈ ℕ) → Σ𝑘 ∈ (ℤ‘1)((𝐹𝑦)‘𝑘) ∈ ℝ)
85, 7mpan2 688 . . . . . 6 (𝑦 ⊆ ℕ → Σ𝑘 ∈ (ℤ‘1)((𝐹𝑦)‘𝑘) ∈ ℝ)
94, 8eqeltrid 2841 . . . . 5 (𝑦 ⊆ ℕ → Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ∈ ℝ)
102, 9syl 17 . . . 4 (𝑦 ∈ 𝒫 ℕ → Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ∈ ℝ)
11 1zzd 12430 . . . . 5 (𝑦 ∈ 𝒫 ℕ → 1 ∈ ℤ)
12 eqidd 2737 . . . . 5 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑦)‘𝑘) = ((𝐹𝑦)‘𝑘))
136rpnnen2lem2 16000 . . . . . . 7 (𝑦 ⊆ ℕ → (𝐹𝑦):ℕ⟶ℝ)
142, 13syl 17 . . . . . 6 (𝑦 ∈ 𝒫 ℕ → (𝐹𝑦):ℕ⟶ℝ)
1514ffvelcdmda 7000 . . . . 5 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑦)‘𝑘) ∈ ℝ)
166rpnnen2lem5 16003 . . . . . 6 ((𝑦 ⊆ ℕ ∧ 1 ∈ ℕ) → seq1( + , (𝐹𝑦)) ∈ dom ⇝ )
172, 5, 16sylancl 586 . . . . 5 (𝑦 ∈ 𝒫 ℕ → seq1( + , (𝐹𝑦)) ∈ dom ⇝ )
18 ssid 3952 . . . . . . . 8 ℕ ⊆ ℕ
196rpnnen2lem4 16002 . . . . . . . 8 ((𝑦 ⊆ ℕ ∧ ℕ ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹𝑦)‘𝑘) ∧ ((𝐹𝑦)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘)))
2018, 19mp3an2 1448 . . . . . . 7 ((𝑦 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹𝑦)‘𝑘) ∧ ((𝐹𝑦)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘)))
2120simpld 495 . . . . . 6 ((𝑦 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝐹𝑦)‘𝑘))
222, 21sylan 580 . . . . 5 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝐹𝑦)‘𝑘))
233, 11, 12, 15, 17, 22isumge0 15554 . . . 4 (𝑦 ∈ 𝒫 ℕ → 0 ≤ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘))
24 halfre 12266 . . . . . 6 (1 / 2) ∈ ℝ
2524a1i 11 . . . . 5 (𝑦 ∈ 𝒫 ℕ → (1 / 2) ∈ ℝ)
26 1re 11054 . . . . . 6 1 ∈ ℝ
2726a1i 11 . . . . 5 (𝑦 ∈ 𝒫 ℕ → 1 ∈ ℝ)
286rpnnen2lem7 16005 . . . . . . . . 9 ((𝑦 ⊆ ℕ ∧ ℕ ⊆ ℕ ∧ 1 ∈ ℕ) → Σ𝑘 ∈ (ℤ‘1)((𝐹𝑦)‘𝑘) ≤ Σ𝑘 ∈ (ℤ‘1)((𝐹‘ℕ)‘𝑘))
2918, 5, 28mp3an23 1452 . . . . . . . 8 (𝑦 ⊆ ℕ → Σ𝑘 ∈ (ℤ‘1)((𝐹𝑦)‘𝑘) ≤ Σ𝑘 ∈ (ℤ‘1)((𝐹‘ℕ)‘𝑘))
302, 29syl 17 . . . . . . 7 (𝑦 ∈ 𝒫 ℕ → Σ𝑘 ∈ (ℤ‘1)((𝐹𝑦)‘𝑘) ≤ Σ𝑘 ∈ (ℤ‘1)((𝐹‘ℕ)‘𝑘))
31 eqid 2736 . . . . . . . 8 (ℤ‘1) = (ℤ‘1)
32 eqidd 2737 . . . . . . . 8 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑘 ∈ (ℤ‘1)) → ((𝐹‘ℕ)‘𝑘) = ((𝐹‘ℕ)‘𝑘))
33 elnnuz 12701 . . . . . . . . . 10 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
346rpnnen2lem2 16000 . . . . . . . . . . . . 13 (ℕ ⊆ ℕ → (𝐹‘ℕ):ℕ⟶ℝ)
3518, 34ax-mp 5 . . . . . . . . . . . 12 (𝐹‘ℕ):ℕ⟶ℝ
3635ffvelcdmi 6999 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((𝐹‘ℕ)‘𝑘) ∈ ℝ)
3736recnd 11082 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((𝐹‘ℕ)‘𝑘) ∈ ℂ)
3833, 37sylbir 234 . . . . . . . . 9 (𝑘 ∈ (ℤ‘1) → ((𝐹‘ℕ)‘𝑘) ∈ ℂ)
3938adantl 482 . . . . . . . 8 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑘 ∈ (ℤ‘1)) → ((𝐹‘ℕ)‘𝑘) ∈ ℂ)
406rpnnen2lem3 16001 . . . . . . . . 9 seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2)
4140a1i 11 . . . . . . . 8 (𝑦 ∈ 𝒫 ℕ → seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2))
4231, 11, 32, 39, 41isumclim 15545 . . . . . . 7 (𝑦 ∈ 𝒫 ℕ → Σ𝑘 ∈ (ℤ‘1)((𝐹‘ℕ)‘𝑘) = (1 / 2))
4330, 42breqtrd 5112 . . . . . 6 (𝑦 ∈ 𝒫 ℕ → Σ𝑘 ∈ (ℤ‘1)((𝐹𝑦)‘𝑘) ≤ (1 / 2))
444, 43eqbrtrid 5121 . . . . 5 (𝑦 ∈ 𝒫 ℕ → Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ≤ (1 / 2))
45 halflt1 12270 . . . . . . 7 (1 / 2) < 1
4624, 26, 45ltleii 11177 . . . . . 6 (1 / 2) ≤ 1
4746a1i 11 . . . . 5 (𝑦 ∈ 𝒫 ℕ → (1 / 2) ≤ 1)
4810, 25, 27, 44, 47letrd 11211 . . . 4 (𝑦 ∈ 𝒫 ℕ → Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ≤ 1)
49 elicc01 13277 . . . 4 𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ∈ (0[,]1) ↔ (Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ∧ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ≤ 1))
5010, 23, 48, 49syl3anbrc 1342 . . 3 (𝑦 ∈ 𝒫 ℕ → Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ∈ (0[,]1))
51 elpwi 4551 . . . . . . . . . . 11 (𝑧 ∈ 𝒫 ℕ → 𝑧 ⊆ ℕ)
52 ssdifss 4080 . . . . . . . . . . . 12 (𝑦 ⊆ ℕ → (𝑦𝑧) ⊆ ℕ)
53 ssdifss 4080 . . . . . . . . . . . 12 (𝑧 ⊆ ℕ → (𝑧𝑦) ⊆ ℕ)
54 unss 4128 . . . . . . . . . . . . 13 (((𝑦𝑧) ⊆ ℕ ∧ (𝑧𝑦) ⊆ ℕ) ↔ ((𝑦𝑧) ∪ (𝑧𝑦)) ⊆ ℕ)
5554biimpi 215 . . . . . . . . . . . 12 (((𝑦𝑧) ⊆ ℕ ∧ (𝑧𝑦) ⊆ ℕ) → ((𝑦𝑧) ∪ (𝑧𝑦)) ⊆ ℕ)
5652, 53, 55syl2an 596 . . . . . . . . . . 11 ((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) → ((𝑦𝑧) ∪ (𝑧𝑦)) ⊆ ℕ)
572, 51, 56syl2an 596 . . . . . . . . . 10 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → ((𝑦𝑧) ∪ (𝑧𝑦)) ⊆ ℕ)
58 eqss 3945 . . . . . . . . . . . . 13 (𝑦 = 𝑧 ↔ (𝑦𝑧𝑧𝑦))
59 ssdif0 4307 . . . . . . . . . . . . . 14 (𝑦𝑧 ↔ (𝑦𝑧) = ∅)
60 ssdif0 4307 . . . . . . . . . . . . . 14 (𝑧𝑦 ↔ (𝑧𝑦) = ∅)
6159, 60anbi12i 627 . . . . . . . . . . . . 13 ((𝑦𝑧𝑧𝑦) ↔ ((𝑦𝑧) = ∅ ∧ (𝑧𝑦) = ∅))
62 un00 4386 . . . . . . . . . . . . 13 (((𝑦𝑧) = ∅ ∧ (𝑧𝑦) = ∅) ↔ ((𝑦𝑧) ∪ (𝑧𝑦)) = ∅)
6358, 61, 623bitri 296 . . . . . . . . . . . 12 (𝑦 = 𝑧 ↔ ((𝑦𝑧) ∪ (𝑧𝑦)) = ∅)
6463necon3bii 2993 . . . . . . . . . . 11 (𝑦𝑧 ↔ ((𝑦𝑧) ∪ (𝑧𝑦)) ≠ ∅)
6564biimpi 215 . . . . . . . . . 10 (𝑦𝑧 → ((𝑦𝑧) ∪ (𝑧𝑦)) ≠ ∅)
66 nnwo 12732 . . . . . . . . . 10 ((((𝑦𝑧) ∪ (𝑧𝑦)) ⊆ ℕ ∧ ((𝑦𝑧) ∪ (𝑧𝑦)) ≠ ∅) → ∃𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))∀𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))𝑚𝑛)
6757, 65, 66syl2an 596 . . . . . . . . 9 (((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) ∧ 𝑦𝑧) → ∃𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))∀𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))𝑚𝑛)
6867ex 413 . . . . . . . 8 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → (𝑦𝑧 → ∃𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))∀𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))𝑚𝑛))
6957sselda 3930 . . . . . . . . . 10 (((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) ∧ 𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))) → 𝑚 ∈ ℕ)
70 df-ral 3062 . . . . . . . . . . . 12 (∀𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))𝑚𝑛 ↔ ∀𝑛(𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦)) → 𝑚𝑛))
71 con34b 315 . . . . . . . . . . . . . 14 ((𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦)) → 𝑚𝑛) ↔ (¬ 𝑚𝑛 → ¬ 𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))))
72 eldif 3906 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (𝑦𝑧) ↔ (𝑛𝑦 ∧ ¬ 𝑛𝑧))
73 eldif 3906 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (𝑧𝑦) ↔ (𝑛𝑧 ∧ ¬ 𝑛𝑦))
7472, 73orbi12i 912 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (𝑦𝑧) ∨ 𝑛 ∈ (𝑧𝑦)) ↔ ((𝑛𝑦 ∧ ¬ 𝑛𝑧) ∨ (𝑛𝑧 ∧ ¬ 𝑛𝑦)))
75 elun 4093 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦)) ↔ (𝑛 ∈ (𝑦𝑧) ∨ 𝑛 ∈ (𝑧𝑦)))
76 xor 1012 . . . . . . . . . . . . . . . . 17 (¬ (𝑛𝑦𝑛𝑧) ↔ ((𝑛𝑦 ∧ ¬ 𝑛𝑧) ∨ (𝑛𝑧 ∧ ¬ 𝑛𝑦)))
7774, 75, 763bitr4ri 303 . . . . . . . . . . . . . . . 16 (¬ (𝑛𝑦𝑛𝑧) ↔ 𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦)))
7877con1bii 356 . . . . . . . . . . . . . . 15 𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦)) ↔ (𝑛𝑦𝑛𝑧))
7978imbi2i 335 . . . . . . . . . . . . . 14 ((¬ 𝑚𝑛 → ¬ 𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))) ↔ (¬ 𝑚𝑛 → (𝑛𝑦𝑛𝑧)))
8071, 79bitri 274 . . . . . . . . . . . . 13 ((𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦)) → 𝑚𝑛) ↔ (¬ 𝑚𝑛 → (𝑛𝑦𝑛𝑧)))
8180albii 1820 . . . . . . . . . . . 12 (∀𝑛(𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦)) → 𝑚𝑛) ↔ ∀𝑛𝑚𝑛 → (𝑛𝑦𝑛𝑧)))
8270, 81bitri 274 . . . . . . . . . . 11 (∀𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))𝑚𝑛 ↔ ∀𝑛𝑚𝑛 → (𝑛𝑦𝑛𝑧)))
83 alral 3075 . . . . . . . . . . . 12 (∀𝑛𝑚𝑛 → (𝑛𝑦𝑛𝑧)) → ∀𝑛 ∈ ℕ (¬ 𝑚𝑛 → (𝑛𝑦𝑛𝑧)))
84 nnre 12059 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
85 nnre 12059 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
86 ltnle 11133 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℝ ∧ 𝑚 ∈ ℝ) → (𝑛 < 𝑚 ↔ ¬ 𝑚𝑛))
8784, 85, 86syl2anr 597 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑛 < 𝑚 ↔ ¬ 𝑚𝑛))
8887imbi1d 341 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → ((𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) ↔ (¬ 𝑚𝑛 → (𝑛𝑦𝑛𝑧))))
8988ralbidva 3168 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) ↔ ∀𝑛 ∈ ℕ (¬ 𝑚𝑛 → (𝑛𝑦𝑛𝑧))))
9083, 89syl5ibr 245 . . . . . . . . . . 11 (𝑚 ∈ ℕ → (∀𝑛𝑚𝑛 → (𝑛𝑦𝑛𝑧)) → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧))))
9182, 90biimtrid 241 . . . . . . . . . 10 (𝑚 ∈ ℕ → (∀𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))𝑚𝑛 → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧))))
9269, 91syl 17 . . . . . . . . 9 (((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) ∧ 𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))) → (∀𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))𝑚𝑛 → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧))))
9392reximdva 3161 . . . . . . . 8 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → (∃𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))∀𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))𝑚𝑛 → ∃𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧))))
9468, 93syld 47 . . . . . . 7 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → (𝑦𝑧 → ∃𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧))))
95 rexun 4134 . . . . . . 7 (∃𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) ↔ (∃𝑚 ∈ (𝑦𝑧)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) ∨ ∃𝑚 ∈ (𝑧𝑦)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧))))
9694, 95syl6ib 250 . . . . . 6 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → (𝑦𝑧 → (∃𝑚 ∈ (𝑦𝑧)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) ∨ ∃𝑚 ∈ (𝑧𝑦)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))))
97 simpll 764 . . . . . . . . . 10 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑦𝑧) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → 𝑦 ⊆ ℕ)
98 simplr 766 . . . . . . . . . 10 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑦𝑧) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → 𝑧 ⊆ ℕ)
99 simprl 768 . . . . . . . . . 10 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑦𝑧) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → 𝑚 ∈ (𝑦𝑧))
100 simprr 770 . . . . . . . . . 10 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑦𝑧) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))
101 biid 260 . . . . . . . . . 10 𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘) ↔ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘))
1026, 97, 98, 99, 100, 101rpnnen2lem11 16009 . . . . . . . . 9 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑦𝑧) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → ¬ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘))
103102rexlimdvaa 3149 . . . . . . . 8 ((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) → (∃𝑚 ∈ (𝑦𝑧)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) → ¬ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘)))
104 simplr 766 . . . . . . . . . 10 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑧𝑦) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → 𝑧 ⊆ ℕ)
105 simpll 764 . . . . . . . . . 10 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑧𝑦) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → 𝑦 ⊆ ℕ)
106 simprl 768 . . . . . . . . . 10 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑧𝑦) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → 𝑚 ∈ (𝑧𝑦))
107 simprr 770 . . . . . . . . . . 11 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑧𝑦) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))
108 bicom 221 . . . . . . . . . . . . 13 ((𝑛𝑧𝑛𝑦) ↔ (𝑛𝑦𝑛𝑧))
109108imbi2i 335 . . . . . . . . . . . 12 ((𝑛 < 𝑚 → (𝑛𝑧𝑛𝑦)) ↔ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))
110109ralbii 3092 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑧𝑛𝑦)) ↔ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))
111107, 110sylibr 233 . . . . . . . . . 10 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑧𝑦) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑧𝑛𝑦)))
112 eqcom 2743 . . . . . . . . . 10 𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘) ↔ Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘))
1136, 104, 105, 106, 111, 112rpnnen2lem11 16009 . . . . . . . . 9 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑧𝑦) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → ¬ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘))
114113rexlimdvaa 3149 . . . . . . . 8 ((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) → (∃𝑚 ∈ (𝑧𝑦)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) → ¬ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘)))
115103, 114jaod 856 . . . . . . 7 ((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) → ((∃𝑚 ∈ (𝑦𝑧)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) ∨ ∃𝑚 ∈ (𝑧𝑦)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧))) → ¬ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘)))
1162, 51, 115syl2an 596 . . . . . 6 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → ((∃𝑚 ∈ (𝑦𝑧)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) ∨ ∃𝑚 ∈ (𝑧𝑦)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧))) → ¬ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘)))
11796, 116syld 47 . . . . 5 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → (𝑦𝑧 → ¬ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘)))
118117necon4ad 2959 . . . 4 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → (Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘) → 𝑦 = 𝑧))
119 fveq2 6811 . . . . . 6 (𝑦 = 𝑧 → (𝐹𝑦) = (𝐹𝑧))
120119fveq1d 6813 . . . . 5 (𝑦 = 𝑧 → ((𝐹𝑦)‘𝑘) = ((𝐹𝑧)‘𝑘))
121120sumeq2sdv 15492 . . . 4 (𝑦 = 𝑧 → Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘))
122118, 121impbid1 224 . . 3 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → (Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘) ↔ 𝑦 = 𝑧))
12350, 122dom2 8834 . 2 ((0[,]1) ∈ V → 𝒫 ℕ ≼ (0[,]1))
1241, 123ax-mp 5 1 𝒫 ℕ ≼ (0[,]1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  wal 1538   = wceq 1540  wcel 2105  wne 2940  wral 3061  wrex 3070  Vcvv 3440  cdif 3893  cun 3894  wss 3896  c0 4266  ifcif 4470  𝒫 cpw 4544   class class class wbr 5086  cmpt 5169  dom cdm 5607  wf 6461  cfv 6465  (class class class)co 7316  cdom 8780  cc 10948  cr 10949  0cc0 10950  1c1 10951   + caddc 10953   < clt 11088  cle 11089   / cdiv 11711  cn 12052  2c2 12107  3c3 12108  cuz 12661  [,]cicc 13161  seqcseq 13800  cexp 13861  cli 15269  Σcsu 15473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5223  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629  ax-inf2 9476  ax-cnex 11006  ax-resscn 11007  ax-1cn 11008  ax-icn 11009  ax-addcl 11010  ax-addrcl 11011  ax-mulcl 11012  ax-mulrcl 11013  ax-mulcom 11014  ax-addass 11015  ax-mulass 11016  ax-distr 11017  ax-i2m1 11018  ax-1ne0 11019  ax-1rid 11020  ax-rnegex 11021  ax-rrecex 11022  ax-cnre 11023  ax-pre-lttri 11024  ax-pre-lttrn 11025  ax-pre-ltadd 11026  ax-pre-mulgt0 11027  ax-pre-sup 11028
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-int 4892  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-se 5563  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-isom 6474  df-riota 7273  df-ov 7319  df-oprab 7320  df-mpo 7321  df-om 7759  df-1st 7877  df-2nd 7878  df-frecs 8145  df-wrecs 8176  df-recs 8250  df-rdg 8289  df-1o 8345  df-er 8547  df-pm 8667  df-en 8783  df-dom 8784  df-sdom 8785  df-fin 8786  df-sup 9277  df-inf 9278  df-oi 9345  df-card 9774  df-pnf 11090  df-mnf 11091  df-xr 11092  df-ltxr 11093  df-le 11094  df-sub 11286  df-neg 11287  df-div 11712  df-nn 12053  df-2 12115  df-3 12116  df-n0 12313  df-z 12399  df-uz 12662  df-rp 12810  df-ico 13164  df-icc 13165  df-fz 13319  df-fzo 13462  df-fl 13591  df-seq 13801  df-exp 13862  df-hash 14124  df-cj 14886  df-re 14887  df-im 14888  df-sqrt 15022  df-abs 15023  df-limsup 15256  df-clim 15273  df-rlim 15274  df-sum 15474
This theorem is referenced by:  rpnnen2  16011
  Copyright terms: Public domain W3C validator