| Step | Hyp | Ref
| Expression |
| 1 | | ovex 7443 |
. 2
⊢ (0[,]1)
∈ V |
| 2 | | elpwi 4587 |
. . . . 5
⊢ (𝑦 ∈ 𝒫 ℕ →
𝑦 ⊆
ℕ) |
| 3 | | nnuz 12900 |
. . . . . . 7
⊢ ℕ =
(ℤ≥‘1) |
| 4 | 3 | sumeq1i 15718 |
. . . . . 6
⊢
Σ𝑘 ∈
ℕ ((𝐹‘𝑦)‘𝑘) = Σ𝑘 ∈
(ℤ≥‘1)((𝐹‘𝑦)‘𝑘) |
| 5 | | 1nn 12256 |
. . . . . . 7
⊢ 1 ∈
ℕ |
| 6 | | rpnnen2.1 |
. . . . . . . 8
⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) |
| 7 | 6 | rpnnen2lem6 16242 |
. . . . . . 7
⊢ ((𝑦 ⊆ ℕ ∧ 1 ∈
ℕ) → Σ𝑘
∈ (ℤ≥‘1)((𝐹‘𝑦)‘𝑘) ∈ ℝ) |
| 8 | 5, 7 | mpan2 691 |
. . . . . 6
⊢ (𝑦 ⊆ ℕ →
Σ𝑘 ∈
(ℤ≥‘1)((𝐹‘𝑦)‘𝑘) ∈ ℝ) |
| 9 | 4, 8 | eqeltrid 2839 |
. . . . 5
⊢ (𝑦 ⊆ ℕ →
Σ𝑘 ∈ ℕ
((𝐹‘𝑦)‘𝑘) ∈ ℝ) |
| 10 | 2, 9 | syl 17 |
. . . 4
⊢ (𝑦 ∈ 𝒫 ℕ →
Σ𝑘 ∈ ℕ
((𝐹‘𝑦)‘𝑘) ∈ ℝ) |
| 11 | | 1zzd 12628 |
. . . . 5
⊢ (𝑦 ∈ 𝒫 ℕ →
1 ∈ ℤ) |
| 12 | | eqidd 2737 |
. . . . 5
⊢ ((𝑦 ∈ 𝒫 ℕ ∧
𝑘 ∈ ℕ) →
((𝐹‘𝑦)‘𝑘) = ((𝐹‘𝑦)‘𝑘)) |
| 13 | 6 | rpnnen2lem2 16238 |
. . . . . . 7
⊢ (𝑦 ⊆ ℕ → (𝐹‘𝑦):ℕ⟶ℝ) |
| 14 | 2, 13 | syl 17 |
. . . . . 6
⊢ (𝑦 ∈ 𝒫 ℕ →
(𝐹‘𝑦):ℕ⟶ℝ) |
| 15 | 14 | ffvelcdmda 7079 |
. . . . 5
⊢ ((𝑦 ∈ 𝒫 ℕ ∧
𝑘 ∈ ℕ) →
((𝐹‘𝑦)‘𝑘) ∈ ℝ) |
| 16 | 6 | rpnnen2lem5 16241 |
. . . . . 6
⊢ ((𝑦 ⊆ ℕ ∧ 1 ∈
ℕ) → seq1( + , (𝐹‘𝑦)) ∈ dom ⇝ ) |
| 17 | 2, 5, 16 | sylancl 586 |
. . . . 5
⊢ (𝑦 ∈ 𝒫 ℕ →
seq1( + , (𝐹‘𝑦)) ∈ dom ⇝
) |
| 18 | | ssid 3986 |
. . . . . . . 8
⊢ ℕ
⊆ ℕ |
| 19 | 6 | rpnnen2lem4 16240 |
. . . . . . . 8
⊢ ((𝑦 ⊆ ℕ ∧ ℕ
⊆ ℕ ∧ 𝑘
∈ ℕ) → (0 ≤ ((𝐹‘𝑦)‘𝑘) ∧ ((𝐹‘𝑦)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘))) |
| 20 | 18, 19 | mp3an2 1451 |
. . . . . . 7
⊢ ((𝑦 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤
((𝐹‘𝑦)‘𝑘) ∧ ((𝐹‘𝑦)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘))) |
| 21 | 20 | simpld 494 |
. . . . . 6
⊢ ((𝑦 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 0 ≤
((𝐹‘𝑦)‘𝑘)) |
| 22 | 2, 21 | sylan 580 |
. . . . 5
⊢ ((𝑦 ∈ 𝒫 ℕ ∧
𝑘 ∈ ℕ) → 0
≤ ((𝐹‘𝑦)‘𝑘)) |
| 23 | 3, 11, 12, 15, 17, 22 | isumge0 15787 |
. . . 4
⊢ (𝑦 ∈ 𝒫 ℕ →
0 ≤ Σ𝑘 ∈
ℕ ((𝐹‘𝑦)‘𝑘)) |
| 24 | | halfre 12459 |
. . . . . 6
⊢ (1 / 2)
∈ ℝ |
| 25 | 24 | a1i 11 |
. . . . 5
⊢ (𝑦 ∈ 𝒫 ℕ →
(1 / 2) ∈ ℝ) |
| 26 | | 1re 11240 |
. . . . . 6
⊢ 1 ∈
ℝ |
| 27 | 26 | a1i 11 |
. . . . 5
⊢ (𝑦 ∈ 𝒫 ℕ →
1 ∈ ℝ) |
| 28 | 6 | rpnnen2lem7 16243 |
. . . . . . . . 9
⊢ ((𝑦 ⊆ ℕ ∧ ℕ
⊆ ℕ ∧ 1 ∈ ℕ) → Σ𝑘 ∈
(ℤ≥‘1)((𝐹‘𝑦)‘𝑘) ≤ Σ𝑘 ∈
(ℤ≥‘1)((𝐹‘ℕ)‘𝑘)) |
| 29 | 18, 5, 28 | mp3an23 1455 |
. . . . . . . 8
⊢ (𝑦 ⊆ ℕ →
Σ𝑘 ∈
(ℤ≥‘1)((𝐹‘𝑦)‘𝑘) ≤ Σ𝑘 ∈
(ℤ≥‘1)((𝐹‘ℕ)‘𝑘)) |
| 30 | 2, 29 | syl 17 |
. . . . . . 7
⊢ (𝑦 ∈ 𝒫 ℕ →
Σ𝑘 ∈
(ℤ≥‘1)((𝐹‘𝑦)‘𝑘) ≤ Σ𝑘 ∈
(ℤ≥‘1)((𝐹‘ℕ)‘𝑘)) |
| 31 | | eqid 2736 |
. . . . . . . 8
⊢
(ℤ≥‘1) =
(ℤ≥‘1) |
| 32 | | eqidd 2737 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝒫 ℕ ∧
𝑘 ∈
(ℤ≥‘1)) → ((𝐹‘ℕ)‘𝑘) = ((𝐹‘ℕ)‘𝑘)) |
| 33 | | elnnuz 12901 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ ↔ 𝑘 ∈
(ℤ≥‘1)) |
| 34 | 6 | rpnnen2lem2 16238 |
. . . . . . . . . . . . 13
⊢ (ℕ
⊆ ℕ → (𝐹‘ℕ):ℕ⟶ℝ) |
| 35 | 18, 34 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (𝐹‘ℕ):ℕ⟶ℝ |
| 36 | 35 | ffvelcdmi 7078 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → ((𝐹‘ℕ)‘𝑘) ∈
ℝ) |
| 37 | 36 | recnd 11268 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → ((𝐹‘ℕ)‘𝑘) ∈
ℂ) |
| 38 | 33, 37 | sylbir 235 |
. . . . . . . . 9
⊢ (𝑘 ∈
(ℤ≥‘1) → ((𝐹‘ℕ)‘𝑘) ∈ ℂ) |
| 39 | 38 | adantl 481 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝒫 ℕ ∧
𝑘 ∈
(ℤ≥‘1)) → ((𝐹‘ℕ)‘𝑘) ∈ ℂ) |
| 40 | 6 | rpnnen2lem3 16239 |
. . . . . . . . 9
⊢ seq1( + ,
(𝐹‘ℕ)) ⇝
(1 / 2) |
| 41 | 40 | a1i 11 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝒫 ℕ →
seq1( + , (𝐹‘ℕ)) ⇝ (1 /
2)) |
| 42 | 31, 11, 32, 39, 41 | isumclim 15778 |
. . . . . . 7
⊢ (𝑦 ∈ 𝒫 ℕ →
Σ𝑘 ∈
(ℤ≥‘1)((𝐹‘ℕ)‘𝑘) = (1 / 2)) |
| 43 | 30, 42 | breqtrd 5150 |
. . . . . 6
⊢ (𝑦 ∈ 𝒫 ℕ →
Σ𝑘 ∈
(ℤ≥‘1)((𝐹‘𝑦)‘𝑘) ≤ (1 / 2)) |
| 44 | 4, 43 | eqbrtrid 5159 |
. . . . 5
⊢ (𝑦 ∈ 𝒫 ℕ →
Σ𝑘 ∈ ℕ
((𝐹‘𝑦)‘𝑘) ≤ (1 / 2)) |
| 45 | | halflt1 12463 |
. . . . . . 7
⊢ (1 / 2)
< 1 |
| 46 | 24, 26, 45 | ltleii 11363 |
. . . . . 6
⊢ (1 / 2)
≤ 1 |
| 47 | 46 | a1i 11 |
. . . . 5
⊢ (𝑦 ∈ 𝒫 ℕ →
(1 / 2) ≤ 1) |
| 48 | 10, 25, 27, 44, 47 | letrd 11397 |
. . . 4
⊢ (𝑦 ∈ 𝒫 ℕ →
Σ𝑘 ∈ ℕ
((𝐹‘𝑦)‘𝑘) ≤ 1) |
| 49 | | elicc01 13488 |
. . . 4
⊢
(Σ𝑘 ∈
ℕ ((𝐹‘𝑦)‘𝑘) ∈ (0[,]1) ↔ (Σ𝑘 ∈ ℕ ((𝐹‘𝑦)‘𝑘) ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈ ℕ ((𝐹‘𝑦)‘𝑘) ∧ Σ𝑘 ∈ ℕ ((𝐹‘𝑦)‘𝑘) ≤ 1)) |
| 50 | 10, 23, 48, 49 | syl3anbrc 1344 |
. . 3
⊢ (𝑦 ∈ 𝒫 ℕ →
Σ𝑘 ∈ ℕ
((𝐹‘𝑦)‘𝑘) ∈ (0[,]1)) |
| 51 | | elpwi 4587 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ 𝒫 ℕ →
𝑧 ⊆
ℕ) |
| 52 | | ssdifss 4120 |
. . . . . . . . . . . 12
⊢ (𝑦 ⊆ ℕ → (𝑦 ∖ 𝑧) ⊆ ℕ) |
| 53 | | ssdifss 4120 |
. . . . . . . . . . . 12
⊢ (𝑧 ⊆ ℕ → (𝑧 ∖ 𝑦) ⊆ ℕ) |
| 54 | | unss 4170 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∖ 𝑧) ⊆ ℕ ∧ (𝑧 ∖ 𝑦) ⊆ ℕ) ↔ ((𝑦 ∖ 𝑧) ∪ (𝑧 ∖ 𝑦)) ⊆ ℕ) |
| 55 | 54 | biimpi 216 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∖ 𝑧) ⊆ ℕ ∧ (𝑧 ∖ 𝑦) ⊆ ℕ) → ((𝑦 ∖ 𝑧) ∪ (𝑧 ∖ 𝑦)) ⊆ ℕ) |
| 56 | 52, 53, 55 | syl2an 596 |
. . . . . . . . . . 11
⊢ ((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) → ((𝑦 ∖ 𝑧) ∪ (𝑧 ∖ 𝑦)) ⊆ ℕ) |
| 57 | 2, 51, 56 | syl2an 596 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝒫 ℕ ∧
𝑧 ∈ 𝒫 ℕ)
→ ((𝑦 ∖ 𝑧) ∪ (𝑧 ∖ 𝑦)) ⊆ ℕ) |
| 58 | | eqss 3979 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑧 ↔ (𝑦 ⊆ 𝑧 ∧ 𝑧 ⊆ 𝑦)) |
| 59 | | ssdif0 4346 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ⊆ 𝑧 ↔ (𝑦 ∖ 𝑧) = ∅) |
| 60 | | ssdif0 4346 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ⊆ 𝑦 ↔ (𝑧 ∖ 𝑦) = ∅) |
| 61 | 59, 60 | anbi12i 628 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ⊆ 𝑧 ∧ 𝑧 ⊆ 𝑦) ↔ ((𝑦 ∖ 𝑧) = ∅ ∧ (𝑧 ∖ 𝑦) = ∅)) |
| 62 | | un00 4425 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∖ 𝑧) = ∅ ∧ (𝑧 ∖ 𝑦) = ∅) ↔ ((𝑦 ∖ 𝑧) ∪ (𝑧 ∖ 𝑦)) = ∅) |
| 63 | 58, 61, 62 | 3bitri 297 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 ↔ ((𝑦 ∖ 𝑧) ∪ (𝑧 ∖ 𝑦)) = ∅) |
| 64 | 63 | necon3bii 2985 |
. . . . . . . . . . 11
⊢ (𝑦 ≠ 𝑧 ↔ ((𝑦 ∖ 𝑧) ∪ (𝑧 ∖ 𝑦)) ≠ ∅) |
| 65 | 64 | biimpi 216 |
. . . . . . . . . 10
⊢ (𝑦 ≠ 𝑧 → ((𝑦 ∖ 𝑧) ∪ (𝑧 ∖ 𝑦)) ≠ ∅) |
| 66 | | nnwo 12934 |
. . . . . . . . . 10
⊢ ((((𝑦 ∖ 𝑧) ∪ (𝑧 ∖ 𝑦)) ⊆ ℕ ∧ ((𝑦 ∖ 𝑧) ∪ (𝑧 ∖ 𝑦)) ≠ ∅) → ∃𝑚 ∈ ((𝑦 ∖ 𝑧) ∪ (𝑧 ∖ 𝑦))∀𝑛 ∈ ((𝑦 ∖ 𝑧) ∪ (𝑧 ∖ 𝑦))𝑚 ≤ 𝑛) |
| 67 | 57, 65, 66 | syl2an 596 |
. . . . . . . . 9
⊢ (((𝑦 ∈ 𝒫 ℕ ∧
𝑧 ∈ 𝒫 ℕ)
∧ 𝑦 ≠ 𝑧) → ∃𝑚 ∈ ((𝑦 ∖ 𝑧) ∪ (𝑧 ∖ 𝑦))∀𝑛 ∈ ((𝑦 ∖ 𝑧) ∪ (𝑧 ∖ 𝑦))𝑚 ≤ 𝑛) |
| 68 | 67 | ex 412 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝒫 ℕ ∧
𝑧 ∈ 𝒫 ℕ)
→ (𝑦 ≠ 𝑧 → ∃𝑚 ∈ ((𝑦 ∖ 𝑧) ∪ (𝑧 ∖ 𝑦))∀𝑛 ∈ ((𝑦 ∖ 𝑧) ∪ (𝑧 ∖ 𝑦))𝑚 ≤ 𝑛)) |
| 69 | 57 | sselda 3963 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ 𝒫 ℕ ∧
𝑧 ∈ 𝒫 ℕ)
∧ 𝑚 ∈ ((𝑦 ∖ 𝑧) ∪ (𝑧 ∖ 𝑦))) → 𝑚 ∈ ℕ) |
| 70 | | df-ral 3053 |
. . . . . . . . . . . 12
⊢
(∀𝑛 ∈
((𝑦 ∖ 𝑧) ∪ (𝑧 ∖ 𝑦))𝑚 ≤ 𝑛 ↔ ∀𝑛(𝑛 ∈ ((𝑦 ∖ 𝑧) ∪ (𝑧 ∖ 𝑦)) → 𝑚 ≤ 𝑛)) |
| 71 | | con34b 316 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ((𝑦 ∖ 𝑧) ∪ (𝑧 ∖ 𝑦)) → 𝑚 ≤ 𝑛) ↔ (¬ 𝑚 ≤ 𝑛 → ¬ 𝑛 ∈ ((𝑦 ∖ 𝑧) ∪ (𝑧 ∖ 𝑦)))) |
| 72 | | eldif 3941 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ (𝑦 ∖ 𝑧) ↔ (𝑛 ∈ 𝑦 ∧ ¬ 𝑛 ∈ 𝑧)) |
| 73 | | eldif 3941 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ (𝑧 ∖ 𝑦) ↔ (𝑛 ∈ 𝑧 ∧ ¬ 𝑛 ∈ 𝑦)) |
| 74 | 72, 73 | orbi12i 914 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ (𝑦 ∖ 𝑧) ∨ 𝑛 ∈ (𝑧 ∖ 𝑦)) ↔ ((𝑛 ∈ 𝑦 ∧ ¬ 𝑛 ∈ 𝑧) ∨ (𝑛 ∈ 𝑧 ∧ ¬ 𝑛 ∈ 𝑦))) |
| 75 | | elun 4133 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ((𝑦 ∖ 𝑧) ∪ (𝑧 ∖ 𝑦)) ↔ (𝑛 ∈ (𝑦 ∖ 𝑧) ∨ 𝑛 ∈ (𝑧 ∖ 𝑦))) |
| 76 | | xor 1016 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧) ↔ ((𝑛 ∈ 𝑦 ∧ ¬ 𝑛 ∈ 𝑧) ∨ (𝑛 ∈ 𝑧 ∧ ¬ 𝑛 ∈ 𝑦))) |
| 77 | 74, 75, 76 | 3bitr4ri 304 |
. . . . . . . . . . . . . . . 16
⊢ (¬
(𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧) ↔ 𝑛 ∈ ((𝑦 ∖ 𝑧) ∪ (𝑧 ∖ 𝑦))) |
| 78 | 77 | con1bii 356 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑛 ∈ ((𝑦 ∖ 𝑧) ∪ (𝑧 ∖ 𝑦)) ↔ (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧)) |
| 79 | 78 | imbi2i 336 |
. . . . . . . . . . . . . 14
⊢ ((¬
𝑚 ≤ 𝑛 → ¬ 𝑛 ∈ ((𝑦 ∖ 𝑧) ∪ (𝑧 ∖ 𝑦))) ↔ (¬ 𝑚 ≤ 𝑛 → (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧))) |
| 80 | 71, 79 | bitri 275 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ((𝑦 ∖ 𝑧) ∪ (𝑧 ∖ 𝑦)) → 𝑚 ≤ 𝑛) ↔ (¬ 𝑚 ≤ 𝑛 → (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧))) |
| 81 | 80 | albii 1819 |
. . . . . . . . . . . 12
⊢
(∀𝑛(𝑛 ∈ ((𝑦 ∖ 𝑧) ∪ (𝑧 ∖ 𝑦)) → 𝑚 ≤ 𝑛) ↔ ∀𝑛(¬ 𝑚 ≤ 𝑛 → (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧))) |
| 82 | 70, 81 | bitri 275 |
. . . . . . . . . . 11
⊢
(∀𝑛 ∈
((𝑦 ∖ 𝑧) ∪ (𝑧 ∖ 𝑦))𝑚 ≤ 𝑛 ↔ ∀𝑛(¬ 𝑚 ≤ 𝑛 → (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧))) |
| 83 | | alral 3066 |
. . . . . . . . . . . 12
⊢
(∀𝑛(¬
𝑚 ≤ 𝑛 → (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧)) → ∀𝑛 ∈ ℕ (¬ 𝑚 ≤ 𝑛 → (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧))) |
| 84 | | nnre 12252 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℝ) |
| 85 | | nnre 12252 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℝ) |
| 86 | | ltnle 11319 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℝ ∧ 𝑚 ∈ ℝ) → (𝑛 < 𝑚 ↔ ¬ 𝑚 ≤ 𝑛)) |
| 87 | 84, 85, 86 | syl2anr 597 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑛 < 𝑚 ↔ ¬ 𝑚 ≤ 𝑛)) |
| 88 | 87 | imbi1d 341 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → ((𝑛 < 𝑚 → (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧)) ↔ (¬ 𝑚 ≤ 𝑛 → (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧)))) |
| 89 | 88 | ralbidva 3162 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ →
(∀𝑛 ∈ ℕ
(𝑛 < 𝑚 → (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧)) ↔ ∀𝑛 ∈ ℕ (¬ 𝑚 ≤ 𝑛 → (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧)))) |
| 90 | 83, 89 | imbitrrid 246 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ →
(∀𝑛(¬ 𝑚 ≤ 𝑛 → (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧)) → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧)))) |
| 91 | 82, 90 | biimtrid 242 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ →
(∀𝑛 ∈ ((𝑦 ∖ 𝑧) ∪ (𝑧 ∖ 𝑦))𝑚 ≤ 𝑛 → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧)))) |
| 92 | 69, 91 | syl 17 |
. . . . . . . . 9
⊢ (((𝑦 ∈ 𝒫 ℕ ∧
𝑧 ∈ 𝒫 ℕ)
∧ 𝑚 ∈ ((𝑦 ∖ 𝑧) ∪ (𝑧 ∖ 𝑦))) → (∀𝑛 ∈ ((𝑦 ∖ 𝑧) ∪ (𝑧 ∖ 𝑦))𝑚 ≤ 𝑛 → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧)))) |
| 93 | 92 | reximdva 3154 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝒫 ℕ ∧
𝑧 ∈ 𝒫 ℕ)
→ (∃𝑚 ∈
((𝑦 ∖ 𝑧) ∪ (𝑧 ∖ 𝑦))∀𝑛 ∈ ((𝑦 ∖ 𝑧) ∪ (𝑧 ∖ 𝑦))𝑚 ≤ 𝑛 → ∃𝑚 ∈ ((𝑦 ∖ 𝑧) ∪ (𝑧 ∖ 𝑦))∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧)))) |
| 94 | 68, 93 | syld 47 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝒫 ℕ ∧
𝑧 ∈ 𝒫 ℕ)
→ (𝑦 ≠ 𝑧 → ∃𝑚 ∈ ((𝑦 ∖ 𝑧) ∪ (𝑧 ∖ 𝑦))∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧)))) |
| 95 | | rexun 4176 |
. . . . . . 7
⊢
(∃𝑚 ∈
((𝑦 ∖ 𝑧) ∪ (𝑧 ∖ 𝑦))∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧)) ↔ (∃𝑚 ∈ (𝑦 ∖ 𝑧)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧)) ∨ ∃𝑚 ∈ (𝑧 ∖ 𝑦)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧)))) |
| 96 | 94, 95 | imbitrdi 251 |
. . . . . 6
⊢ ((𝑦 ∈ 𝒫 ℕ ∧
𝑧 ∈ 𝒫 ℕ)
→ (𝑦 ≠ 𝑧 → (∃𝑚 ∈ (𝑦 ∖ 𝑧)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧)) ∨ ∃𝑚 ∈ (𝑧 ∖ 𝑦)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧))))) |
| 97 | | simpll 766 |
. . . . . . . . . 10
⊢ (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑦 ∖ 𝑧) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧)))) → 𝑦 ⊆ ℕ) |
| 98 | | simplr 768 |
. . . . . . . . . 10
⊢ (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑦 ∖ 𝑧) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧)))) → 𝑧 ⊆ ℕ) |
| 99 | | simprl 770 |
. . . . . . . . . 10
⊢ (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑦 ∖ 𝑧) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧)))) → 𝑚 ∈ (𝑦 ∖ 𝑧)) |
| 100 | | simprr 772 |
. . . . . . . . . 10
⊢ (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑦 ∖ 𝑧) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧)))) → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧))) |
| 101 | | biid 261 |
. . . . . . . . . 10
⊢
(Σ𝑘 ∈
ℕ ((𝐹‘𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹‘𝑧)‘𝑘) ↔ Σ𝑘 ∈ ℕ ((𝐹‘𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹‘𝑧)‘𝑘)) |
| 102 | 6, 97, 98, 99, 100, 101 | rpnnen2lem11 16247 |
. . . . . . . . 9
⊢ (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑦 ∖ 𝑧) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧)))) → ¬ Σ𝑘 ∈ ℕ ((𝐹‘𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹‘𝑧)‘𝑘)) |
| 103 | 102 | rexlimdvaa 3143 |
. . . . . . . 8
⊢ ((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) →
(∃𝑚 ∈ (𝑦 ∖ 𝑧)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧)) → ¬ Σ𝑘 ∈ ℕ ((𝐹‘𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹‘𝑧)‘𝑘))) |
| 104 | | simplr 768 |
. . . . . . . . . 10
⊢ (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑧 ∖ 𝑦) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧)))) → 𝑧 ⊆ ℕ) |
| 105 | | simpll 766 |
. . . . . . . . . 10
⊢ (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑧 ∖ 𝑦) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧)))) → 𝑦 ⊆ ℕ) |
| 106 | | simprl 770 |
. . . . . . . . . 10
⊢ (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑧 ∖ 𝑦) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧)))) → 𝑚 ∈ (𝑧 ∖ 𝑦)) |
| 107 | | simprr 772 |
. . . . . . . . . . 11
⊢ (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑧 ∖ 𝑦) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧)))) → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧))) |
| 108 | | bicom 222 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ 𝑧 ↔ 𝑛 ∈ 𝑦) ↔ (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧)) |
| 109 | 108 | imbi2i 336 |
. . . . . . . . . . . 12
⊢ ((𝑛 < 𝑚 → (𝑛 ∈ 𝑧 ↔ 𝑛 ∈ 𝑦)) ↔ (𝑛 < 𝑚 → (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧))) |
| 110 | 109 | ralbii 3083 |
. . . . . . . . . . 11
⊢
(∀𝑛 ∈
ℕ (𝑛 < 𝑚 → (𝑛 ∈ 𝑧 ↔ 𝑛 ∈ 𝑦)) ↔ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧))) |
| 111 | 107, 110 | sylibr 234 |
. . . . . . . . . 10
⊢ (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑧 ∖ 𝑦) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧)))) → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛 ∈ 𝑧 ↔ 𝑛 ∈ 𝑦))) |
| 112 | | eqcom 2743 |
. . . . . . . . . 10
⊢
(Σ𝑘 ∈
ℕ ((𝐹‘𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹‘𝑧)‘𝑘) ↔ Σ𝑘 ∈ ℕ ((𝐹‘𝑧)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹‘𝑦)‘𝑘)) |
| 113 | 6, 104, 105, 106, 111, 112 | rpnnen2lem11 16247 |
. . . . . . . . 9
⊢ (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑧 ∖ 𝑦) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧)))) → ¬ Σ𝑘 ∈ ℕ ((𝐹‘𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹‘𝑧)‘𝑘)) |
| 114 | 113 | rexlimdvaa 3143 |
. . . . . . . 8
⊢ ((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) →
(∃𝑚 ∈ (𝑧 ∖ 𝑦)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧)) → ¬ Σ𝑘 ∈ ℕ ((𝐹‘𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹‘𝑧)‘𝑘))) |
| 115 | 103, 114 | jaod 859 |
. . . . . . 7
⊢ ((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) →
((∃𝑚 ∈ (𝑦 ∖ 𝑧)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧)) ∨ ∃𝑚 ∈ (𝑧 ∖ 𝑦)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧))) → ¬ Σ𝑘 ∈ ℕ ((𝐹‘𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹‘𝑧)‘𝑘))) |
| 116 | 2, 51, 115 | syl2an 596 |
. . . . . 6
⊢ ((𝑦 ∈ 𝒫 ℕ ∧
𝑧 ∈ 𝒫 ℕ)
→ ((∃𝑚 ∈
(𝑦 ∖ 𝑧)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧)) ∨ ∃𝑚 ∈ (𝑧 ∖ 𝑦)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛 ∈ 𝑦 ↔ 𝑛 ∈ 𝑧))) → ¬ Σ𝑘 ∈ ℕ ((𝐹‘𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹‘𝑧)‘𝑘))) |
| 117 | 96, 116 | syld 47 |
. . . . 5
⊢ ((𝑦 ∈ 𝒫 ℕ ∧
𝑧 ∈ 𝒫 ℕ)
→ (𝑦 ≠ 𝑧 → ¬ Σ𝑘 ∈ ℕ ((𝐹‘𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹‘𝑧)‘𝑘))) |
| 118 | 117 | necon4ad 2952 |
. . . 4
⊢ ((𝑦 ∈ 𝒫 ℕ ∧
𝑧 ∈ 𝒫 ℕ)
→ (Σ𝑘 ∈
ℕ ((𝐹‘𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹‘𝑧)‘𝑘) → 𝑦 = 𝑧)) |
| 119 | | fveq2 6881 |
. . . . . 6
⊢ (𝑦 = 𝑧 → (𝐹‘𝑦) = (𝐹‘𝑧)) |
| 120 | 119 | fveq1d 6883 |
. . . . 5
⊢ (𝑦 = 𝑧 → ((𝐹‘𝑦)‘𝑘) = ((𝐹‘𝑧)‘𝑘)) |
| 121 | 120 | sumeq2sdv 15724 |
. . . 4
⊢ (𝑦 = 𝑧 → Σ𝑘 ∈ ℕ ((𝐹‘𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹‘𝑧)‘𝑘)) |
| 122 | 118, 121 | impbid1 225 |
. . 3
⊢ ((𝑦 ∈ 𝒫 ℕ ∧
𝑧 ∈ 𝒫 ℕ)
→ (Σ𝑘 ∈
ℕ ((𝐹‘𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹‘𝑧)‘𝑘) ↔ 𝑦 = 𝑧)) |
| 123 | 50, 122 | dom2 9014 |
. 2
⊢ ((0[,]1)
∈ V → 𝒫 ℕ ≼ (0[,]1)) |
| 124 | 1, 123 | ax-mp 5 |
1
⊢ 𝒫
ℕ ≼ (0[,]1) |