MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem12 Structured version   Visualization version   GIF version

Theorem rpnnen2lem12 15570
Description: Lemma for rpnnen2 15571. (Contributed by Mario Carneiro, 13-May-2013.)
Hypothesis
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
Assertion
Ref Expression
rpnnen2lem12 𝒫 ℕ ≼ (0[,]1)
Distinct variable group:   𝑥,𝑛
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem rpnnen2lem12
Dummy variables 𝑚 𝑦 𝑧 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7168 . 2 (0[,]1) ∈ V
2 elpwi 4506 . . . . 5 (𝑦 ∈ 𝒫 ℕ → 𝑦 ⊆ ℕ)
3 nnuz 12269 . . . . . . 7 ℕ = (ℤ‘1)
43sumeq1i 15047 . . . . . 6 Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ (ℤ‘1)((𝐹𝑦)‘𝑘)
5 1nn 11636 . . . . . . 7 1 ∈ ℕ
6 rpnnen2.1 . . . . . . . 8 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
76rpnnen2lem6 15564 . . . . . . 7 ((𝑦 ⊆ ℕ ∧ 1 ∈ ℕ) → Σ𝑘 ∈ (ℤ‘1)((𝐹𝑦)‘𝑘) ∈ ℝ)
85, 7mpan2 690 . . . . . 6 (𝑦 ⊆ ℕ → Σ𝑘 ∈ (ℤ‘1)((𝐹𝑦)‘𝑘) ∈ ℝ)
94, 8eqeltrid 2894 . . . . 5 (𝑦 ⊆ ℕ → Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ∈ ℝ)
102, 9syl 17 . . . 4 (𝑦 ∈ 𝒫 ℕ → Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ∈ ℝ)
11 1zzd 12001 . . . . 5 (𝑦 ∈ 𝒫 ℕ → 1 ∈ ℤ)
12 eqidd 2799 . . . . 5 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑦)‘𝑘) = ((𝐹𝑦)‘𝑘))
136rpnnen2lem2 15560 . . . . . . 7 (𝑦 ⊆ ℕ → (𝐹𝑦):ℕ⟶ℝ)
142, 13syl 17 . . . . . 6 (𝑦 ∈ 𝒫 ℕ → (𝐹𝑦):ℕ⟶ℝ)
1514ffvelrnda 6828 . . . . 5 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑦)‘𝑘) ∈ ℝ)
166rpnnen2lem5 15563 . . . . . 6 ((𝑦 ⊆ ℕ ∧ 1 ∈ ℕ) → seq1( + , (𝐹𝑦)) ∈ dom ⇝ )
172, 5, 16sylancl 589 . . . . 5 (𝑦 ∈ 𝒫 ℕ → seq1( + , (𝐹𝑦)) ∈ dom ⇝ )
18 ssid 3937 . . . . . . . 8 ℕ ⊆ ℕ
196rpnnen2lem4 15562 . . . . . . . 8 ((𝑦 ⊆ ℕ ∧ ℕ ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹𝑦)‘𝑘) ∧ ((𝐹𝑦)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘)))
2018, 19mp3an2 1446 . . . . . . 7 ((𝑦 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹𝑦)‘𝑘) ∧ ((𝐹𝑦)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘)))
2120simpld 498 . . . . . 6 ((𝑦 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝐹𝑦)‘𝑘))
222, 21sylan 583 . . . . 5 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝐹𝑦)‘𝑘))
233, 11, 12, 15, 17, 22isumge0 15113 . . . 4 (𝑦 ∈ 𝒫 ℕ → 0 ≤ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘))
24 halfre 11839 . . . . . 6 (1 / 2) ∈ ℝ
2524a1i 11 . . . . 5 (𝑦 ∈ 𝒫 ℕ → (1 / 2) ∈ ℝ)
26 1re 10630 . . . . . 6 1 ∈ ℝ
2726a1i 11 . . . . 5 (𝑦 ∈ 𝒫 ℕ → 1 ∈ ℝ)
286rpnnen2lem7 15565 . . . . . . . . 9 ((𝑦 ⊆ ℕ ∧ ℕ ⊆ ℕ ∧ 1 ∈ ℕ) → Σ𝑘 ∈ (ℤ‘1)((𝐹𝑦)‘𝑘) ≤ Σ𝑘 ∈ (ℤ‘1)((𝐹‘ℕ)‘𝑘))
2918, 5, 28mp3an23 1450 . . . . . . . 8 (𝑦 ⊆ ℕ → Σ𝑘 ∈ (ℤ‘1)((𝐹𝑦)‘𝑘) ≤ Σ𝑘 ∈ (ℤ‘1)((𝐹‘ℕ)‘𝑘))
302, 29syl 17 . . . . . . 7 (𝑦 ∈ 𝒫 ℕ → Σ𝑘 ∈ (ℤ‘1)((𝐹𝑦)‘𝑘) ≤ Σ𝑘 ∈ (ℤ‘1)((𝐹‘ℕ)‘𝑘))
31 eqid 2798 . . . . . . . 8 (ℤ‘1) = (ℤ‘1)
32 eqidd 2799 . . . . . . . 8 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑘 ∈ (ℤ‘1)) → ((𝐹‘ℕ)‘𝑘) = ((𝐹‘ℕ)‘𝑘))
33 elnnuz 12270 . . . . . . . . . 10 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
346rpnnen2lem2 15560 . . . . . . . . . . . . 13 (ℕ ⊆ ℕ → (𝐹‘ℕ):ℕ⟶ℝ)
3518, 34ax-mp 5 . . . . . . . . . . . 12 (𝐹‘ℕ):ℕ⟶ℝ
3635ffvelrni 6827 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((𝐹‘ℕ)‘𝑘) ∈ ℝ)
3736recnd 10658 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((𝐹‘ℕ)‘𝑘) ∈ ℂ)
3833, 37sylbir 238 . . . . . . . . 9 (𝑘 ∈ (ℤ‘1) → ((𝐹‘ℕ)‘𝑘) ∈ ℂ)
3938adantl 485 . . . . . . . 8 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑘 ∈ (ℤ‘1)) → ((𝐹‘ℕ)‘𝑘) ∈ ℂ)
406rpnnen2lem3 15561 . . . . . . . . 9 seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2)
4140a1i 11 . . . . . . . 8 (𝑦 ∈ 𝒫 ℕ → seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2))
4231, 11, 32, 39, 41isumclim 15104 . . . . . . 7 (𝑦 ∈ 𝒫 ℕ → Σ𝑘 ∈ (ℤ‘1)((𝐹‘ℕ)‘𝑘) = (1 / 2))
4330, 42breqtrd 5056 . . . . . 6 (𝑦 ∈ 𝒫 ℕ → Σ𝑘 ∈ (ℤ‘1)((𝐹𝑦)‘𝑘) ≤ (1 / 2))
444, 43eqbrtrid 5065 . . . . 5 (𝑦 ∈ 𝒫 ℕ → Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ≤ (1 / 2))
45 halflt1 11843 . . . . . . 7 (1 / 2) < 1
4624, 26, 45ltleii 10752 . . . . . 6 (1 / 2) ≤ 1
4746a1i 11 . . . . 5 (𝑦 ∈ 𝒫 ℕ → (1 / 2) ≤ 1)
4810, 25, 27, 44, 47letrd 10786 . . . 4 (𝑦 ∈ 𝒫 ℕ → Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ≤ 1)
49 elicc01 12844 . . . 4 𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ∈ (0[,]1) ↔ (Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ∧ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ≤ 1))
5010, 23, 48, 49syl3anbrc 1340 . . 3 (𝑦 ∈ 𝒫 ℕ → Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ∈ (0[,]1))
51 elpwi 4506 . . . . . . . . . . 11 (𝑧 ∈ 𝒫 ℕ → 𝑧 ⊆ ℕ)
52 ssdifss 4063 . . . . . . . . . . . 12 (𝑦 ⊆ ℕ → (𝑦𝑧) ⊆ ℕ)
53 ssdifss 4063 . . . . . . . . . . . 12 (𝑧 ⊆ ℕ → (𝑧𝑦) ⊆ ℕ)
54 unss 4111 . . . . . . . . . . . . 13 (((𝑦𝑧) ⊆ ℕ ∧ (𝑧𝑦) ⊆ ℕ) ↔ ((𝑦𝑧) ∪ (𝑧𝑦)) ⊆ ℕ)
5554biimpi 219 . . . . . . . . . . . 12 (((𝑦𝑧) ⊆ ℕ ∧ (𝑧𝑦) ⊆ ℕ) → ((𝑦𝑧) ∪ (𝑧𝑦)) ⊆ ℕ)
5652, 53, 55syl2an 598 . . . . . . . . . . 11 ((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) → ((𝑦𝑧) ∪ (𝑧𝑦)) ⊆ ℕ)
572, 51, 56syl2an 598 . . . . . . . . . 10 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → ((𝑦𝑧) ∪ (𝑧𝑦)) ⊆ ℕ)
58 eqss 3930 . . . . . . . . . . . . 13 (𝑦 = 𝑧 ↔ (𝑦𝑧𝑧𝑦))
59 ssdif0 4277 . . . . . . . . . . . . . 14 (𝑦𝑧 ↔ (𝑦𝑧) = ∅)
60 ssdif0 4277 . . . . . . . . . . . . . 14 (𝑧𝑦 ↔ (𝑧𝑦) = ∅)
6159, 60anbi12i 629 . . . . . . . . . . . . 13 ((𝑦𝑧𝑧𝑦) ↔ ((𝑦𝑧) = ∅ ∧ (𝑧𝑦) = ∅))
62 un00 4350 . . . . . . . . . . . . 13 (((𝑦𝑧) = ∅ ∧ (𝑧𝑦) = ∅) ↔ ((𝑦𝑧) ∪ (𝑧𝑦)) = ∅)
6358, 61, 623bitri 300 . . . . . . . . . . . 12 (𝑦 = 𝑧 ↔ ((𝑦𝑧) ∪ (𝑧𝑦)) = ∅)
6463necon3bii 3039 . . . . . . . . . . 11 (𝑦𝑧 ↔ ((𝑦𝑧) ∪ (𝑧𝑦)) ≠ ∅)
6564biimpi 219 . . . . . . . . . 10 (𝑦𝑧 → ((𝑦𝑧) ∪ (𝑧𝑦)) ≠ ∅)
66 nnwo 12301 . . . . . . . . . 10 ((((𝑦𝑧) ∪ (𝑧𝑦)) ⊆ ℕ ∧ ((𝑦𝑧) ∪ (𝑧𝑦)) ≠ ∅) → ∃𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))∀𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))𝑚𝑛)
6757, 65, 66syl2an 598 . . . . . . . . 9 (((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) ∧ 𝑦𝑧) → ∃𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))∀𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))𝑚𝑛)
6867ex 416 . . . . . . . 8 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → (𝑦𝑧 → ∃𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))∀𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))𝑚𝑛))
6957sselda 3915 . . . . . . . . . 10 (((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) ∧ 𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))) → 𝑚 ∈ ℕ)
70 df-ral 3111 . . . . . . . . . . . 12 (∀𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))𝑚𝑛 ↔ ∀𝑛(𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦)) → 𝑚𝑛))
71 con34b 319 . . . . . . . . . . . . . 14 ((𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦)) → 𝑚𝑛) ↔ (¬ 𝑚𝑛 → ¬ 𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))))
72 eldif 3891 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (𝑦𝑧) ↔ (𝑛𝑦 ∧ ¬ 𝑛𝑧))
73 eldif 3891 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (𝑧𝑦) ↔ (𝑛𝑧 ∧ ¬ 𝑛𝑦))
7472, 73orbi12i 912 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (𝑦𝑧) ∨ 𝑛 ∈ (𝑧𝑦)) ↔ ((𝑛𝑦 ∧ ¬ 𝑛𝑧) ∨ (𝑛𝑧 ∧ ¬ 𝑛𝑦)))
75 elun 4076 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦)) ↔ (𝑛 ∈ (𝑦𝑧) ∨ 𝑛 ∈ (𝑧𝑦)))
76 xor 1012 . . . . . . . . . . . . . . . . 17 (¬ (𝑛𝑦𝑛𝑧) ↔ ((𝑛𝑦 ∧ ¬ 𝑛𝑧) ∨ (𝑛𝑧 ∧ ¬ 𝑛𝑦)))
7774, 75, 763bitr4ri 307 . . . . . . . . . . . . . . . 16 (¬ (𝑛𝑦𝑛𝑧) ↔ 𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦)))
7877con1bii 360 . . . . . . . . . . . . . . 15 𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦)) ↔ (𝑛𝑦𝑛𝑧))
7978imbi2i 339 . . . . . . . . . . . . . 14 ((¬ 𝑚𝑛 → ¬ 𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))) ↔ (¬ 𝑚𝑛 → (𝑛𝑦𝑛𝑧)))
8071, 79bitri 278 . . . . . . . . . . . . 13 ((𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦)) → 𝑚𝑛) ↔ (¬ 𝑚𝑛 → (𝑛𝑦𝑛𝑧)))
8180albii 1821 . . . . . . . . . . . 12 (∀𝑛(𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦)) → 𝑚𝑛) ↔ ∀𝑛𝑚𝑛 → (𝑛𝑦𝑛𝑧)))
8270, 81bitri 278 . . . . . . . . . . 11 (∀𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))𝑚𝑛 ↔ ∀𝑛𝑚𝑛 → (𝑛𝑦𝑛𝑧)))
83 alral 3122 . . . . . . . . . . . 12 (∀𝑛𝑚𝑛 → (𝑛𝑦𝑛𝑧)) → ∀𝑛 ∈ ℕ (¬ 𝑚𝑛 → (𝑛𝑦𝑛𝑧)))
84 nnre 11632 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
85 nnre 11632 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
86 ltnle 10709 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℝ ∧ 𝑚 ∈ ℝ) → (𝑛 < 𝑚 ↔ ¬ 𝑚𝑛))
8784, 85, 86syl2anr 599 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑛 < 𝑚 ↔ ¬ 𝑚𝑛))
8887imbi1d 345 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → ((𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) ↔ (¬ 𝑚𝑛 → (𝑛𝑦𝑛𝑧))))
8988ralbidva 3161 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) ↔ ∀𝑛 ∈ ℕ (¬ 𝑚𝑛 → (𝑛𝑦𝑛𝑧))))
9083, 89syl5ibr 249 . . . . . . . . . . 11 (𝑚 ∈ ℕ → (∀𝑛𝑚𝑛 → (𝑛𝑦𝑛𝑧)) → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧))))
9182, 90syl5bi 245 . . . . . . . . . 10 (𝑚 ∈ ℕ → (∀𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))𝑚𝑛 → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧))))
9269, 91syl 17 . . . . . . . . 9 (((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) ∧ 𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))) → (∀𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))𝑚𝑛 → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧))))
9392reximdva 3233 . . . . . . . 8 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → (∃𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))∀𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))𝑚𝑛 → ∃𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧))))
9468, 93syld 47 . . . . . . 7 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → (𝑦𝑧 → ∃𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧))))
95 rexun 4117 . . . . . . 7 (∃𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) ↔ (∃𝑚 ∈ (𝑦𝑧)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) ∨ ∃𝑚 ∈ (𝑧𝑦)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧))))
9694, 95syl6ib 254 . . . . . 6 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → (𝑦𝑧 → (∃𝑚 ∈ (𝑦𝑧)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) ∨ ∃𝑚 ∈ (𝑧𝑦)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))))
97 simpll 766 . . . . . . . . . 10 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑦𝑧) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → 𝑦 ⊆ ℕ)
98 simplr 768 . . . . . . . . . 10 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑦𝑧) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → 𝑧 ⊆ ℕ)
99 simprl 770 . . . . . . . . . 10 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑦𝑧) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → 𝑚 ∈ (𝑦𝑧))
100 simprr 772 . . . . . . . . . 10 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑦𝑧) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))
101 biid 264 . . . . . . . . . 10 𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘) ↔ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘))
1026, 97, 98, 99, 100, 101rpnnen2lem11 15569 . . . . . . . . 9 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑦𝑧) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → ¬ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘))
103102rexlimdvaa 3244 . . . . . . . 8 ((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) → (∃𝑚 ∈ (𝑦𝑧)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) → ¬ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘)))
104 simplr 768 . . . . . . . . . 10 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑧𝑦) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → 𝑧 ⊆ ℕ)
105 simpll 766 . . . . . . . . . 10 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑧𝑦) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → 𝑦 ⊆ ℕ)
106 simprl 770 . . . . . . . . . 10 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑧𝑦) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → 𝑚 ∈ (𝑧𝑦))
107 simprr 772 . . . . . . . . . . 11 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑧𝑦) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))
108 bicom 225 . . . . . . . . . . . . 13 ((𝑛𝑧𝑛𝑦) ↔ (𝑛𝑦𝑛𝑧))
109108imbi2i 339 . . . . . . . . . . . 12 ((𝑛 < 𝑚 → (𝑛𝑧𝑛𝑦)) ↔ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))
110109ralbii 3133 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑧𝑛𝑦)) ↔ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))
111107, 110sylibr 237 . . . . . . . . . 10 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑧𝑦) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑧𝑛𝑦)))
112 eqcom 2805 . . . . . . . . . 10 𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘) ↔ Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘))
1136, 104, 105, 106, 111, 112rpnnen2lem11 15569 . . . . . . . . 9 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑧𝑦) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → ¬ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘))
114113rexlimdvaa 3244 . . . . . . . 8 ((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) → (∃𝑚 ∈ (𝑧𝑦)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) → ¬ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘)))
115103, 114jaod 856 . . . . . . 7 ((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) → ((∃𝑚 ∈ (𝑦𝑧)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) ∨ ∃𝑚 ∈ (𝑧𝑦)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧))) → ¬ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘)))
1162, 51, 115syl2an 598 . . . . . 6 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → ((∃𝑚 ∈ (𝑦𝑧)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) ∨ ∃𝑚 ∈ (𝑧𝑦)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧))) → ¬ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘)))
11796, 116syld 47 . . . . 5 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → (𝑦𝑧 → ¬ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘)))
118117necon4ad 3006 . . . 4 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → (Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘) → 𝑦 = 𝑧))
119 fveq2 6645 . . . . . 6 (𝑦 = 𝑧 → (𝐹𝑦) = (𝐹𝑧))
120119fveq1d 6647 . . . . 5 (𝑦 = 𝑧 → ((𝐹𝑦)‘𝑘) = ((𝐹𝑧)‘𝑘))
121120sumeq2sdv 15053 . . . 4 (𝑦 = 𝑧 → Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘))
122118, 121impbid1 228 . . 3 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → (Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘) ↔ 𝑦 = 𝑧))
12350, 122dom2 8535 . 2 ((0[,]1) ∈ V → 𝒫 ℕ ≼ (0[,]1))
1241, 123ax-mp 5 1 𝒫 ℕ ≼ (0[,]1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  wal 1536   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  Vcvv 3441  cdif 3878  cun 3879  wss 3881  c0 4243  ifcif 4425  𝒫 cpw 4497   class class class wbr 5030  cmpt 5110  dom cdm 5519  wf 6320  cfv 6324  (class class class)co 7135  cdom 8490  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   < clt 10664  cle 10665   / cdiv 11286  cn 11625  2c2 11680  3c3 11681  cuz 12231  [,]cicc 12729  seqcseq 13364  cexp 13425  cli 14833  Σcsu 15034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035
This theorem is referenced by:  rpnnen2  15571
  Copyright terms: Public domain W3C validator