Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ist0-3 | Structured version Visualization version GIF version |
Description: The predicate "is a T0 space" expressed in more familiar terms. (Contributed by Jeff Hankins, 1-Feb-2010.) |
Ref | Expression |
---|---|
ist0-3 | ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑜 ∈ 𝐽 ((𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜) ∨ (¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ist0-2 22476 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦))) | |
2 | con34b 315 | . . . 4 ⊢ ((∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦) ↔ (¬ 𝑥 = 𝑦 → ¬ ∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜))) | |
3 | df-ne 2945 | . . . . 5 ⊢ (𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦) | |
4 | xor 1011 | . . . . . . . 8 ⊢ (¬ (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) ↔ ((𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜) ∨ (𝑦 ∈ 𝑜 ∧ ¬ 𝑥 ∈ 𝑜))) | |
5 | ancom 460 | . . . . . . . . 9 ⊢ ((𝑦 ∈ 𝑜 ∧ ¬ 𝑥 ∈ 𝑜) ↔ (¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜)) | |
6 | 5 | orbi2i 909 | . . . . . . . 8 ⊢ (((𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜) ∨ (𝑦 ∈ 𝑜 ∧ ¬ 𝑥 ∈ 𝑜)) ↔ ((𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜) ∨ (¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜))) |
7 | 4, 6 | bitri 274 | . . . . . . 7 ⊢ (¬ (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) ↔ ((𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜) ∨ (¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜))) |
8 | 7 | rexbii 3179 | . . . . . 6 ⊢ (∃𝑜 ∈ 𝐽 ¬ (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) ↔ ∃𝑜 ∈ 𝐽 ((𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜) ∨ (¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜))) |
9 | rexnal 3167 | . . . . . 6 ⊢ (∃𝑜 ∈ 𝐽 ¬ (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) ↔ ¬ ∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜)) | |
10 | 8, 9 | bitr3i 276 | . . . . 5 ⊢ (∃𝑜 ∈ 𝐽 ((𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜) ∨ (¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜)) ↔ ¬ ∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜)) |
11 | 3, 10 | imbi12i 350 | . . . 4 ⊢ ((𝑥 ≠ 𝑦 → ∃𝑜 ∈ 𝐽 ((𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜) ∨ (¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜))) ↔ (¬ 𝑥 = 𝑦 → ¬ ∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜))) |
12 | 2, 11 | bitr4i 277 | . . 3 ⊢ ((∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦) ↔ (𝑥 ≠ 𝑦 → ∃𝑜 ∈ 𝐽 ((𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜) ∨ (¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜)))) |
13 | 12 | 2ralbii 3093 | . 2 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑜 ∈ 𝐽 ((𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜) ∨ (¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜)))) |
14 | 1, 13 | bitrdi 286 | 1 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑜 ∈ 𝐽 ((𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜) ∨ (¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜))))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 ∈ wcel 2109 ≠ wne 2944 ∀wral 3065 ∃wrex 3066 ‘cfv 6430 TopOnctopon 22040 Kol2ct0 22438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-iota 6388 df-fun 6432 df-fv 6438 df-topon 22041 df-t0 22445 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |