![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ist0-3 | Structured version Visualization version GIF version |
Description: The predicate "is a T0 space" expressed in more familiar terms. (Contributed by Jeff Hankins, 1-Feb-2010.) |
Ref | Expression |
---|---|
ist0-3 | ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑜 ∈ 𝐽 ((𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜) ∨ (¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ist0-2 21640 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦))) | |
2 | con34b 317 | . . . 4 ⊢ ((∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦) ↔ (¬ 𝑥 = 𝑦 → ¬ ∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜))) | |
3 | df-ne 2987 | . . . . 5 ⊢ (𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦) | |
4 | xor 1009 | . . . . . . . 8 ⊢ (¬ (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) ↔ ((𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜) ∨ (𝑦 ∈ 𝑜 ∧ ¬ 𝑥 ∈ 𝑜))) | |
5 | ancom 461 | . . . . . . . . 9 ⊢ ((𝑦 ∈ 𝑜 ∧ ¬ 𝑥 ∈ 𝑜) ↔ (¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜)) | |
6 | 5 | orbi2i 907 | . . . . . . . 8 ⊢ (((𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜) ∨ (𝑦 ∈ 𝑜 ∧ ¬ 𝑥 ∈ 𝑜)) ↔ ((𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜) ∨ (¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜))) |
7 | 4, 6 | bitri 276 | . . . . . . 7 ⊢ (¬ (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) ↔ ((𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜) ∨ (¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜))) |
8 | 7 | rexbii 3213 | . . . . . 6 ⊢ (∃𝑜 ∈ 𝐽 ¬ (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) ↔ ∃𝑜 ∈ 𝐽 ((𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜) ∨ (¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜))) |
9 | rexnal 3204 | . . . . . 6 ⊢ (∃𝑜 ∈ 𝐽 ¬ (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) ↔ ¬ ∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜)) | |
10 | 8, 9 | bitr3i 278 | . . . . 5 ⊢ (∃𝑜 ∈ 𝐽 ((𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜) ∨ (¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜)) ↔ ¬ ∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜)) |
11 | 3, 10 | imbi12i 352 | . . . 4 ⊢ ((𝑥 ≠ 𝑦 → ∃𝑜 ∈ 𝐽 ((𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜) ∨ (¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜))) ↔ (¬ 𝑥 = 𝑦 → ¬ ∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜))) |
12 | 2, 11 | bitr4i 279 | . . 3 ⊢ ((∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦) ↔ (𝑥 ≠ 𝑦 → ∃𝑜 ∈ 𝐽 ((𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜) ∨ (¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜)))) |
13 | 12 | 2ralbii 3135 | . 2 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑜 ∈ 𝐽 ((𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜) ∨ (¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜)))) |
14 | 1, 13 | syl6bb 288 | 1 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑜 ∈ 𝐽 ((𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜) ∨ (¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜))))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 207 ∧ wa 396 ∨ wo 842 ∈ wcel 2083 ≠ wne 2986 ∀wral 3107 ∃wrex 3108 ‘cfv 6232 TopOnctopon 21206 Kol2ct0 21602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-ral 3112 df-rex 3113 df-rab 3116 df-v 3442 df-sbc 3712 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-op 4485 df-uni 4752 df-br 4969 df-opab 5031 df-mpt 5048 df-id 5355 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-iota 6196 df-fun 6234 df-fv 6240 df-topon 21207 df-t0 21609 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |