MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ist0-3 Structured version   Visualization version   GIF version

Theorem ist0-3 21432
Description: The predicate "is a T0 space" expressed in more familiar terms. (Contributed by Jeff Hankins, 1-Feb-2010.)
Assertion
Ref Expression
ist0-3 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑜𝐽 ((𝑥𝑜 ∧ ¬ 𝑦𝑜) ∨ (¬ 𝑥𝑜𝑦𝑜)))))
Distinct variable groups:   𝑥,𝑦,𝑜,𝐽   𝑜,𝑋,𝑥,𝑦

Proof of Theorem ist0-3
StepHypRef Expression
1 ist0-2 21431 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
2 con34b 307 . . . 4 ((∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) ↔ (¬ 𝑥 = 𝑦 → ¬ ∀𝑜𝐽 (𝑥𝑜𝑦𝑜)))
3 df-ne 2938 . . . . 5 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
4 xor 1038 . . . . . . . 8 (¬ (𝑥𝑜𝑦𝑜) ↔ ((𝑥𝑜 ∧ ¬ 𝑦𝑜) ∨ (𝑦𝑜 ∧ ¬ 𝑥𝑜)))
5 ancom 452 . . . . . . . . 9 ((𝑦𝑜 ∧ ¬ 𝑥𝑜) ↔ (¬ 𝑥𝑜𝑦𝑜))
65orbi2i 936 . . . . . . . 8 (((𝑥𝑜 ∧ ¬ 𝑦𝑜) ∨ (𝑦𝑜 ∧ ¬ 𝑥𝑜)) ↔ ((𝑥𝑜 ∧ ¬ 𝑦𝑜) ∨ (¬ 𝑥𝑜𝑦𝑜)))
74, 6bitri 266 . . . . . . 7 (¬ (𝑥𝑜𝑦𝑜) ↔ ((𝑥𝑜 ∧ ¬ 𝑦𝑜) ∨ (¬ 𝑥𝑜𝑦𝑜)))
87rexbii 3188 . . . . . 6 (∃𝑜𝐽 ¬ (𝑥𝑜𝑦𝑜) ↔ ∃𝑜𝐽 ((𝑥𝑜 ∧ ¬ 𝑦𝑜) ∨ (¬ 𝑥𝑜𝑦𝑜)))
9 rexnal 3141 . . . . . 6 (∃𝑜𝐽 ¬ (𝑥𝑜𝑦𝑜) ↔ ¬ ∀𝑜𝐽 (𝑥𝑜𝑦𝑜))
108, 9bitr3i 268 . . . . 5 (∃𝑜𝐽 ((𝑥𝑜 ∧ ¬ 𝑦𝑜) ∨ (¬ 𝑥𝑜𝑦𝑜)) ↔ ¬ ∀𝑜𝐽 (𝑥𝑜𝑦𝑜))
113, 10imbi12i 341 . . . 4 ((𝑥𝑦 → ∃𝑜𝐽 ((𝑥𝑜 ∧ ¬ 𝑦𝑜) ∨ (¬ 𝑥𝑜𝑦𝑜))) ↔ (¬ 𝑥 = 𝑦 → ¬ ∀𝑜𝐽 (𝑥𝑜𝑦𝑜)))
122, 11bitr4i 269 . . 3 ((∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) ↔ (𝑥𝑦 → ∃𝑜𝐽 ((𝑥𝑜 ∧ ¬ 𝑦𝑜) ∨ (¬ 𝑥𝑜𝑦𝑜))))
13122ralbii 3128 . 2 (∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑜𝐽 ((𝑥𝑜 ∧ ¬ 𝑦𝑜) ∨ (¬ 𝑥𝑜𝑦𝑜))))
141, 13syl6bb 278 1 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑜𝐽 ((𝑥𝑜 ∧ ¬ 𝑦𝑜) ∨ (¬ 𝑥𝑜𝑦𝑜)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 873  wcel 2155  wne 2937  wral 3055  wrex 3056  cfv 6070  TopOnctopon 20997  Kol2ct0 21393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3599  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-op 4343  df-uni 4597  df-br 4812  df-opab 4874  df-mpt 4891  df-id 5187  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-iota 6033  df-fun 6072  df-fv 6078  df-topon 20998  df-t0 21400
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator