MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ist0-3 Structured version   Visualization version   GIF version

Theorem ist0-3 23260
Description: The predicate "is a T0 space" expressed in more familiar terms. (Contributed by Jeff Hankins, 1-Feb-2010.)
Assertion
Ref Expression
ist0-3 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑜𝐽 ((𝑥𝑜 ∧ ¬ 𝑦𝑜) ∨ (¬ 𝑥𝑜𝑦𝑜)))))
Distinct variable groups:   𝑥,𝑦,𝑜,𝐽   𝑜,𝑋,𝑥,𝑦

Proof of Theorem ist0-3
StepHypRef Expression
1 ist0-2 23259 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
2 con34b 316 . . . 4 ((∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) ↔ (¬ 𝑥 = 𝑦 → ¬ ∀𝑜𝐽 (𝑥𝑜𝑦𝑜)))
3 df-ne 2929 . . . . 5 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
4 xor 1016 . . . . . . . 8 (¬ (𝑥𝑜𝑦𝑜) ↔ ((𝑥𝑜 ∧ ¬ 𝑦𝑜) ∨ (𝑦𝑜 ∧ ¬ 𝑥𝑜)))
5 ancom 460 . . . . . . . . 9 ((𝑦𝑜 ∧ ¬ 𝑥𝑜) ↔ (¬ 𝑥𝑜𝑦𝑜))
65orbi2i 912 . . . . . . . 8 (((𝑥𝑜 ∧ ¬ 𝑦𝑜) ∨ (𝑦𝑜 ∧ ¬ 𝑥𝑜)) ↔ ((𝑥𝑜 ∧ ¬ 𝑦𝑜) ∨ (¬ 𝑥𝑜𝑦𝑜)))
74, 6bitri 275 . . . . . . 7 (¬ (𝑥𝑜𝑦𝑜) ↔ ((𝑥𝑜 ∧ ¬ 𝑦𝑜) ∨ (¬ 𝑥𝑜𝑦𝑜)))
87rexbii 3079 . . . . . 6 (∃𝑜𝐽 ¬ (𝑥𝑜𝑦𝑜) ↔ ∃𝑜𝐽 ((𝑥𝑜 ∧ ¬ 𝑦𝑜) ∨ (¬ 𝑥𝑜𝑦𝑜)))
9 rexnal 3084 . . . . . 6 (∃𝑜𝐽 ¬ (𝑥𝑜𝑦𝑜) ↔ ¬ ∀𝑜𝐽 (𝑥𝑜𝑦𝑜))
108, 9bitr3i 277 . . . . 5 (∃𝑜𝐽 ((𝑥𝑜 ∧ ¬ 𝑦𝑜) ∨ (¬ 𝑥𝑜𝑦𝑜)) ↔ ¬ ∀𝑜𝐽 (𝑥𝑜𝑦𝑜))
113, 10imbi12i 350 . . . 4 ((𝑥𝑦 → ∃𝑜𝐽 ((𝑥𝑜 ∧ ¬ 𝑦𝑜) ∨ (¬ 𝑥𝑜𝑦𝑜))) ↔ (¬ 𝑥 = 𝑦 → ¬ ∀𝑜𝐽 (𝑥𝑜𝑦𝑜)))
122, 11bitr4i 278 . . 3 ((∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) ↔ (𝑥𝑦 → ∃𝑜𝐽 ((𝑥𝑜 ∧ ¬ 𝑦𝑜) ∨ (¬ 𝑥𝑜𝑦𝑜))))
13122ralbii 3107 . 2 (∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑜𝐽 ((𝑥𝑜 ∧ ¬ 𝑦𝑜) ∨ (¬ 𝑥𝑜𝑦𝑜))))
141, 13bitrdi 287 1 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑜𝐽 ((𝑥𝑜 ∧ ¬ 𝑦𝑜) ∨ (¬ 𝑥𝑜𝑦𝑜)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  wcel 2111  wne 2928  wral 3047  wrex 3056  cfv 6481  TopOnctopon 22825  Kol2ct0 23221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489  df-topon 22826  df-t0 23228
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator