| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ist0-3 | Structured version Visualization version GIF version | ||
| Description: The predicate "is a T0 space" expressed in more familiar terms. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| Ref | Expression |
|---|---|
| ist0-3 | ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑜 ∈ 𝐽 ((𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜) ∨ (¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ist0-2 23287 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦))) | |
| 2 | con34b 316 | . . . 4 ⊢ ((∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦) ↔ (¬ 𝑥 = 𝑦 → ¬ ∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜))) | |
| 3 | df-ne 2934 | . . . . 5 ⊢ (𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦) | |
| 4 | xor 1016 | . . . . . . . 8 ⊢ (¬ (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) ↔ ((𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜) ∨ (𝑦 ∈ 𝑜 ∧ ¬ 𝑥 ∈ 𝑜))) | |
| 5 | ancom 460 | . . . . . . . . 9 ⊢ ((𝑦 ∈ 𝑜 ∧ ¬ 𝑥 ∈ 𝑜) ↔ (¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜)) | |
| 6 | 5 | orbi2i 912 | . . . . . . . 8 ⊢ (((𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜) ∨ (𝑦 ∈ 𝑜 ∧ ¬ 𝑥 ∈ 𝑜)) ↔ ((𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜) ∨ (¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜))) |
| 7 | 4, 6 | bitri 275 | . . . . . . 7 ⊢ (¬ (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) ↔ ((𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜) ∨ (¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜))) |
| 8 | 7 | rexbii 3084 | . . . . . 6 ⊢ (∃𝑜 ∈ 𝐽 ¬ (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) ↔ ∃𝑜 ∈ 𝐽 ((𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜) ∨ (¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜))) |
| 9 | rexnal 3090 | . . . . . 6 ⊢ (∃𝑜 ∈ 𝐽 ¬ (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) ↔ ¬ ∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜)) | |
| 10 | 8, 9 | bitr3i 277 | . . . . 5 ⊢ (∃𝑜 ∈ 𝐽 ((𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜) ∨ (¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜)) ↔ ¬ ∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜)) |
| 11 | 3, 10 | imbi12i 350 | . . . 4 ⊢ ((𝑥 ≠ 𝑦 → ∃𝑜 ∈ 𝐽 ((𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜) ∨ (¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜))) ↔ (¬ 𝑥 = 𝑦 → ¬ ∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜))) |
| 12 | 2, 11 | bitr4i 278 | . . 3 ⊢ ((∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦) ↔ (𝑥 ≠ 𝑦 → ∃𝑜 ∈ 𝐽 ((𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜) ∨ (¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜)))) |
| 13 | 12 | 2ralbii 3116 | . 2 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑜 ∈ 𝐽 ((𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜) ∨ (¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜)))) |
| 14 | 1, 13 | bitrdi 287 | 1 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Kol2 ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑜 ∈ 𝐽 ((𝑥 ∈ 𝑜 ∧ ¬ 𝑦 ∈ 𝑜) ∨ (¬ 𝑥 ∈ 𝑜 ∧ 𝑦 ∈ 𝑜))))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∈ wcel 2109 ≠ wne 2933 ∀wral 3052 ∃wrex 3061 ‘cfv 6536 TopOnctopon 22853 Kol2ct0 23249 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-topon 22854 df-t0 23256 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |