Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldepslinc Structured version   Visualization version   GIF version

Theorem ldepslinc 47143
Description: For (left) vector spaces, isldepslvec2 47119 provides an alternative definition of being a linearly dependent subset, whereas ldepsnlinc 47142 indicates that there is not an analogous alternative definition for arbitrary (left) modules. (Contributed by AV, 25-May-2019.) (Revised by AV, 30-Jul-2019.)
Assertion
Ref Expression
ldepslinc (βˆ€π‘š ∈ LVec βˆ€π‘  ∈ 𝒫 (Baseβ€˜π‘š)(𝑠 linDepS π‘š ↔ βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣)) ∧ Β¬ βˆ€π‘š ∈ LMod βˆ€π‘  ∈ 𝒫 (Baseβ€˜π‘š)(𝑠 linDepS π‘š ↔ βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣)))
Distinct variable group:   𝑓,π‘š,𝑠,𝑣

Proof of Theorem ldepslinc
StepHypRef Expression
1 eqid 2732 . . . . 5 (Baseβ€˜π‘š) = (Baseβ€˜π‘š)
2 eqid 2732 . . . . 5 (0gβ€˜π‘š) = (0gβ€˜π‘š)
3 eqid 2732 . . . . 5 (Scalarβ€˜π‘š) = (Scalarβ€˜π‘š)
4 eqid 2732 . . . . 5 (Baseβ€˜(Scalarβ€˜π‘š)) = (Baseβ€˜(Scalarβ€˜π‘š))
5 eqid 2732 . . . . 5 (0gβ€˜(Scalarβ€˜π‘š)) = (0gβ€˜(Scalarβ€˜π‘š))
61, 2, 3, 4, 5isldepslvec2 47119 . . . 4 ((π‘š ∈ LVec ∧ 𝑠 ∈ 𝒫 (Baseβ€˜π‘š)) β†’ (βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣) ↔ 𝑠 linDepS π‘š))
76bicomd 222 . . 3 ((π‘š ∈ LVec ∧ 𝑠 ∈ 𝒫 (Baseβ€˜π‘š)) β†’ (𝑠 linDepS π‘š ↔ βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣)))
87rgen2 3197 . 2 βˆ€π‘š ∈ LVec βˆ€π‘  ∈ 𝒫 (Baseβ€˜π‘š)(𝑠 linDepS π‘š ↔ βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣))
9 ldepsnlinc 47142 . . . . . . 7 βˆƒπ‘š ∈ LMod βˆƒπ‘  ∈ 𝒫 (Baseβ€˜π‘š)(𝑠 linDepS π‘š ∧ βˆ€π‘£ ∈ 𝑠 βˆ€π‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) β†’ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) β‰  𝑣))
10 df-ne 2941 . . . . . . . . . . . . . . 15 ((𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) β‰  𝑣 ↔ Β¬ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣)
1110imbi2i 335 . . . . . . . . . . . . . 14 ((𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) β†’ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) β‰  𝑣) ↔ (𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) β†’ Β¬ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣))
12 imnan 400 . . . . . . . . . . . . . 14 ((𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) β†’ Β¬ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣) ↔ Β¬ (𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣))
1311, 12bitri 274 . . . . . . . . . . . . 13 ((𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) β†’ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) β‰  𝑣) ↔ Β¬ (𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣))
1413ralbii 3093 . . . . . . . . . . . 12 (βˆ€π‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) β†’ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) β‰  𝑣) ↔ βˆ€π‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣})) Β¬ (𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣))
15 ralnex 3072 . . . . . . . . . . . 12 (βˆ€π‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣})) Β¬ (𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣) ↔ Β¬ βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣))
1614, 15bitri 274 . . . . . . . . . . 11 (βˆ€π‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) β†’ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) β‰  𝑣) ↔ Β¬ βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣))
1716ralbii 3093 . . . . . . . . . 10 (βˆ€π‘£ ∈ 𝑠 βˆ€π‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) β†’ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) β‰  𝑣) ↔ βˆ€π‘£ ∈ 𝑠 Β¬ βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣))
18 ralnex 3072 . . . . . . . . . 10 (βˆ€π‘£ ∈ 𝑠 Β¬ βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣) ↔ Β¬ βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣))
1917, 18bitri 274 . . . . . . . . 9 (βˆ€π‘£ ∈ 𝑠 βˆ€π‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) β†’ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) β‰  𝑣) ↔ Β¬ βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣))
2019anbi2i 623 . . . . . . . 8 ((𝑠 linDepS π‘š ∧ βˆ€π‘£ ∈ 𝑠 βˆ€π‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) β†’ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) β‰  𝑣)) ↔ (𝑠 linDepS π‘š ∧ Β¬ βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣)))
21202rexbii 3129 . . . . . . 7 (βˆƒπ‘š ∈ LMod βˆƒπ‘  ∈ 𝒫 (Baseβ€˜π‘š)(𝑠 linDepS π‘š ∧ βˆ€π‘£ ∈ 𝑠 βˆ€π‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) β†’ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) β‰  𝑣)) ↔ βˆƒπ‘š ∈ LMod βˆƒπ‘  ∈ 𝒫 (Baseβ€˜π‘š)(𝑠 linDepS π‘š ∧ Β¬ βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣)))
229, 21mpbi 229 . . . . . 6 βˆƒπ‘š ∈ LMod βˆƒπ‘  ∈ 𝒫 (Baseβ€˜π‘š)(𝑠 linDepS π‘š ∧ Β¬ βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣))
2322orci 863 . . . . 5 (βˆƒπ‘š ∈ LMod βˆƒπ‘  ∈ 𝒫 (Baseβ€˜π‘š)(𝑠 linDepS π‘š ∧ Β¬ βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣)) ∨ βˆƒπ‘š ∈ LMod βˆƒπ‘  ∈ 𝒫 (Baseβ€˜π‘š)(βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣) ∧ Β¬ 𝑠 linDepS π‘š))
24 r19.43 3122 . . . . 5 (βˆƒπ‘š ∈ LMod (βˆƒπ‘  ∈ 𝒫 (Baseβ€˜π‘š)(𝑠 linDepS π‘š ∧ Β¬ βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣)) ∨ βˆƒπ‘  ∈ 𝒫 (Baseβ€˜π‘š)(βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣) ∧ Β¬ 𝑠 linDepS π‘š)) ↔ (βˆƒπ‘š ∈ LMod βˆƒπ‘  ∈ 𝒫 (Baseβ€˜π‘š)(𝑠 linDepS π‘š ∧ Β¬ βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣)) ∨ βˆƒπ‘š ∈ LMod βˆƒπ‘  ∈ 𝒫 (Baseβ€˜π‘š)(βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣) ∧ Β¬ 𝑠 linDepS π‘š)))
2523, 24mpbir 230 . . . 4 βˆƒπ‘š ∈ LMod (βˆƒπ‘  ∈ 𝒫 (Baseβ€˜π‘š)(𝑠 linDepS π‘š ∧ Β¬ βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣)) ∨ βˆƒπ‘  ∈ 𝒫 (Baseβ€˜π‘š)(βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣) ∧ Β¬ 𝑠 linDepS π‘š))
26 r19.43 3122 . . . . 5 (βˆƒπ‘  ∈ 𝒫 (Baseβ€˜π‘š)((𝑠 linDepS π‘š ∧ Β¬ βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣)) ∨ (βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣) ∧ Β¬ 𝑠 linDepS π‘š)) ↔ (βˆƒπ‘  ∈ 𝒫 (Baseβ€˜π‘š)(𝑠 linDepS π‘š ∧ Β¬ βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣)) ∨ βˆƒπ‘  ∈ 𝒫 (Baseβ€˜π‘š)(βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣) ∧ Β¬ 𝑠 linDepS π‘š)))
2726rexbii 3094 . . . 4 (βˆƒπ‘š ∈ LMod βˆƒπ‘  ∈ 𝒫 (Baseβ€˜π‘š)((𝑠 linDepS π‘š ∧ Β¬ βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣)) ∨ (βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣) ∧ Β¬ 𝑠 linDepS π‘š)) ↔ βˆƒπ‘š ∈ LMod (βˆƒπ‘  ∈ 𝒫 (Baseβ€˜π‘š)(𝑠 linDepS π‘š ∧ Β¬ βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣)) ∨ βˆƒπ‘  ∈ 𝒫 (Baseβ€˜π‘š)(βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣) ∧ Β¬ 𝑠 linDepS π‘š)))
2825, 27mpbir 230 . . 3 βˆƒπ‘š ∈ LMod βˆƒπ‘  ∈ 𝒫 (Baseβ€˜π‘š)((𝑠 linDepS π‘š ∧ Β¬ βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣)) ∨ (βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣) ∧ Β¬ 𝑠 linDepS π‘š))
29 xor 1013 . . . . . . . 8 (Β¬ (𝑠 linDepS π‘š ↔ βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣)) ↔ ((𝑠 linDepS π‘š ∧ Β¬ βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣)) ∨ (βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣) ∧ Β¬ 𝑠 linDepS π‘š)))
3029bicomi 223 . . . . . . 7 (((𝑠 linDepS π‘š ∧ Β¬ βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣)) ∨ (βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣) ∧ Β¬ 𝑠 linDepS π‘š)) ↔ Β¬ (𝑠 linDepS π‘š ↔ βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣)))
3130rexbii 3094 . . . . . 6 (βˆƒπ‘  ∈ 𝒫 (Baseβ€˜π‘š)((𝑠 linDepS π‘š ∧ Β¬ βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣)) ∨ (βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣) ∧ Β¬ 𝑠 linDepS π‘š)) ↔ βˆƒπ‘  ∈ 𝒫 (Baseβ€˜π‘š) Β¬ (𝑠 linDepS π‘š ↔ βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣)))
32 rexnal 3100 . . . . . 6 (βˆƒπ‘  ∈ 𝒫 (Baseβ€˜π‘š) Β¬ (𝑠 linDepS π‘š ↔ βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣)) ↔ Β¬ βˆ€π‘  ∈ 𝒫 (Baseβ€˜π‘š)(𝑠 linDepS π‘š ↔ βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣)))
3331, 32bitri 274 . . . . 5 (βˆƒπ‘  ∈ 𝒫 (Baseβ€˜π‘š)((𝑠 linDepS π‘š ∧ Β¬ βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣)) ∨ (βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣) ∧ Β¬ 𝑠 linDepS π‘š)) ↔ Β¬ βˆ€π‘  ∈ 𝒫 (Baseβ€˜π‘š)(𝑠 linDepS π‘š ↔ βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣)))
3433rexbii 3094 . . . 4 (βˆƒπ‘š ∈ LMod βˆƒπ‘  ∈ 𝒫 (Baseβ€˜π‘š)((𝑠 linDepS π‘š ∧ Β¬ βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣)) ∨ (βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣) ∧ Β¬ 𝑠 linDepS π‘š)) ↔ βˆƒπ‘š ∈ LMod Β¬ βˆ€π‘  ∈ 𝒫 (Baseβ€˜π‘š)(𝑠 linDepS π‘š ↔ βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣)))
35 rexnal 3100 . . . 4 (βˆƒπ‘š ∈ LMod Β¬ βˆ€π‘  ∈ 𝒫 (Baseβ€˜π‘š)(𝑠 linDepS π‘š ↔ βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣)) ↔ Β¬ βˆ€π‘š ∈ LMod βˆ€π‘  ∈ 𝒫 (Baseβ€˜π‘š)(𝑠 linDepS π‘š ↔ βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣)))
3634, 35bitri 274 . . 3 (βˆƒπ‘š ∈ LMod βˆƒπ‘  ∈ 𝒫 (Baseβ€˜π‘š)((𝑠 linDepS π‘š ∧ Β¬ βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣)) ∨ (βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣) ∧ Β¬ 𝑠 linDepS π‘š)) ↔ Β¬ βˆ€π‘š ∈ LMod βˆ€π‘  ∈ 𝒫 (Baseβ€˜π‘š)(𝑠 linDepS π‘š ↔ βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣)))
3728, 36mpbi 229 . 2 Β¬ βˆ€π‘š ∈ LMod βˆ€π‘  ∈ 𝒫 (Baseβ€˜π‘š)(𝑠 linDepS π‘š ↔ βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣))
388, 37pm3.2i 471 1 (βˆ€π‘š ∈ LVec βˆ€π‘  ∈ 𝒫 (Baseβ€˜π‘š)(𝑠 linDepS π‘š ↔ βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣)) ∧ Β¬ βˆ€π‘š ∈ LMod βˆ€π‘  ∈ 𝒫 (Baseβ€˜π‘š)(𝑠 linDepS π‘š ↔ βˆƒπ‘£ ∈ 𝑠 βˆƒπ‘“ ∈ ((Baseβ€˜(Scalarβ€˜π‘š)) ↑m (𝑠 βˆ– {𝑣}))(𝑓 finSupp (0gβ€˜(Scalarβ€˜π‘š)) ∧ (𝑓( linC β€˜π‘š)(𝑠 βˆ– {𝑣})) = 𝑣)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∨ wo 845   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  βˆƒwrex 3070   βˆ– cdif 3944  π’« cpw 4601  {csn 4627   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405   ↑m cmap 8816   finSupp cfsupp 9357  Basecbs 17140  Scalarcsca 17196  0gc0g 17381  LModclmod 20463  LVecclvec 20705   linC clinc 47038   linDepS clindeps 47075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8699  df-map 8818  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-rp 12971  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-dvds 16194  df-prm 16605  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-hom 17217  df-cco 17218  df-0g 17383  df-gsum 17384  df-prds 17389  df-pws 17391  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-submnd 18668  df-grp 18818  df-minusg 18819  df-sbg 18820  df-mulg 18945  df-subg 18997  df-ghm 19084  df-cntz 19175  df-cmn 19644  df-abl 19645  df-mgp 19982  df-ur 19999  df-ring 20051  df-cring 20052  df-oppr 20142  df-dvdsr 20163  df-unit 20164  df-invr 20194  df-nzr 20284  df-drng 20309  df-subrg 20353  df-lmod 20465  df-lss 20535  df-lvec 20706  df-sra 20777  df-rgmod 20778  df-cnfld 20937  df-zring 21010  df-dsmm 21278  df-frlm 21293  df-linc 47040  df-lininds 47076  df-lindeps 47078
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator