Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. . . . 5
β’
(Baseβπ) =
(Baseβπ) |
2 | | eqid 2732 |
. . . . 5
β’
(0gβπ) = (0gβπ) |
3 | | eqid 2732 |
. . . . 5
β’
(Scalarβπ) =
(Scalarβπ) |
4 | | eqid 2732 |
. . . . 5
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
5 | | eqid 2732 |
. . . . 5
β’
(0gβ(Scalarβπ)) = (0gβ(Scalarβπ)) |
6 | 1, 2, 3, 4, 5 | isldepslvec2 47119 |
. . . 4
β’ ((π β LVec β§ π β π«
(Baseβπ)) β
(βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£) β π linDepS π)) |
7 | 6 | bicomd 222 |
. . 3
β’ ((π β LVec β§ π β π«
(Baseβπ)) β
(π linDepS π β βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£))) |
8 | 7 | rgen2 3197 |
. 2
β’
βπ β
LVec βπ β
π« (Baseβπ)(π linDepS π β βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£)) |
9 | | ldepsnlinc 47142 |
. . . . . . 7
β’
βπ β LMod
βπ β π«
(Baseβπ)(π linDepS π β§ βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β (π( linC βπ)(π β {π£})) β π£)) |
10 | | df-ne 2941 |
. . . . . . . . . . . . . . 15
β’ ((π( linC βπ)(π β {π£})) β π£ β Β¬ (π( linC βπ)(π β {π£})) = π£) |
11 | 10 | imbi2i 335 |
. . . . . . . . . . . . . 14
β’ ((π finSupp
(0gβ(Scalarβπ)) β (π( linC βπ)(π β {π£})) β π£) β (π finSupp
(0gβ(Scalarβπ)) β Β¬ (π( linC βπ)(π β {π£})) = π£)) |
12 | | imnan 400 |
. . . . . . . . . . . . . 14
β’ ((π finSupp
(0gβ(Scalarβπ)) β Β¬ (π( linC βπ)(π β {π£})) = π£) β Β¬ (π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£)) |
13 | 11, 12 | bitri 274 |
. . . . . . . . . . . . 13
β’ ((π finSupp
(0gβ(Scalarβπ)) β (π( linC βπ)(π β {π£})) β π£) β Β¬ (π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£)) |
14 | 13 | ralbii 3093 |
. . . . . . . . . . . 12
β’
(βπ β
((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β (π( linC βπ)(π β {π£})) β π£) β βπ β ((Baseβ(Scalarβπ)) βm (π β {π£})) Β¬ (π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£)) |
15 | | ralnex 3072 |
. . . . . . . . . . . 12
β’
(βπ β
((Baseβ(Scalarβπ)) βm (π β {π£})) Β¬ (π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£) β Β¬ βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£)) |
16 | 14, 15 | bitri 274 |
. . . . . . . . . . 11
β’
(βπ β
((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β (π( linC βπ)(π β {π£})) β π£) β Β¬ βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£)) |
17 | 16 | ralbii 3093 |
. . . . . . . . . 10
β’
(βπ£ β
π βπ β
((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β (π( linC βπ)(π β {π£})) β π£) β βπ£ β π Β¬ βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£)) |
18 | | ralnex 3072 |
. . . . . . . . . 10
β’
(βπ£ β
π Β¬ βπ β
((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£) β Β¬ βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£)) |
19 | 17, 18 | bitri 274 |
. . . . . . . . 9
β’
(βπ£ β
π βπ β
((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β (π( linC βπ)(π β {π£})) β π£) β Β¬ βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£)) |
20 | 19 | anbi2i 623 |
. . . . . . . 8
β’ ((π linDepS π β§ βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β (π( linC βπ)(π β {π£})) β π£)) β (π linDepS π β§ Β¬ βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£))) |
21 | 20 | 2rexbii 3129 |
. . . . . . 7
β’
(βπ β
LMod βπ β
π« (Baseβπ)(π linDepS π β§ βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β (π( linC βπ)(π β {π£})) β π£)) β βπ β LMod βπ β π« (Baseβπ)(π linDepS π β§ Β¬ βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£))) |
22 | 9, 21 | mpbi 229 |
. . . . . 6
β’
βπ β LMod
βπ β π«
(Baseβπ)(π linDepS π β§ Β¬ βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£)) |
23 | 22 | orci 863 |
. . . . 5
β’
(βπ β
LMod βπ β
π« (Baseβπ)(π linDepS π β§ Β¬ βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£)) β¨ βπ β LMod βπ β π« (Baseβπ)(βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£) β§ Β¬ π linDepS π)) |
24 | | r19.43 3122 |
. . . . 5
β’
(βπ β
LMod (βπ β
π« (Baseβπ)(π linDepS π β§ Β¬ βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£)) β¨ βπ β π« (Baseβπ)(βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£) β§ Β¬ π linDepS π)) β (βπ β LMod βπ β π« (Baseβπ)(π linDepS π β§ Β¬ βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£)) β¨ βπ β LMod βπ β π« (Baseβπ)(βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£) β§ Β¬ π linDepS π))) |
25 | 23, 24 | mpbir 230 |
. . . 4
β’
βπ β LMod
(βπ β π«
(Baseβπ)(π linDepS π β§ Β¬ βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£)) β¨ βπ β π« (Baseβπ)(βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£) β§ Β¬ π linDepS π)) |
26 | | r19.43 3122 |
. . . . 5
β’
(βπ β
π« (Baseβπ)((π linDepS π β§ Β¬ βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£)) β¨ (βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£) β§ Β¬ π linDepS π)) β (βπ β π« (Baseβπ)(π linDepS π β§ Β¬ βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£)) β¨ βπ β π« (Baseβπ)(βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£) β§ Β¬ π linDepS π))) |
27 | 26 | rexbii 3094 |
. . . 4
β’
(βπ β
LMod βπ β
π« (Baseβπ)((π linDepS π β§ Β¬ βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£)) β¨ (βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£) β§ Β¬ π linDepS π)) β βπ β LMod (βπ β π« (Baseβπ)(π linDepS π β§ Β¬ βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£)) β¨ βπ β π« (Baseβπ)(βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£) β§ Β¬ π linDepS π))) |
28 | 25, 27 | mpbir 230 |
. . 3
β’
βπ β LMod
βπ β π«
(Baseβπ)((π linDepS π β§ Β¬ βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£)) β¨ (βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£) β§ Β¬ π linDepS π)) |
29 | | xor 1013 |
. . . . . . . 8
β’ (Β¬
(π linDepS π β βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£)) β ((π linDepS π β§ Β¬ βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£)) β¨ (βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£) β§ Β¬ π linDepS π))) |
30 | 29 | bicomi 223 |
. . . . . . 7
β’ (((π linDepS π β§ Β¬ βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£)) β¨ (βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£) β§ Β¬ π linDepS π)) β Β¬ (π linDepS π β βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£))) |
31 | 30 | rexbii 3094 |
. . . . . 6
β’
(βπ β
π« (Baseβπ)((π linDepS π β§ Β¬ βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£)) β¨ (βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£) β§ Β¬ π linDepS π)) β βπ β π« (Baseβπ) Β¬ (π linDepS π β βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£))) |
32 | | rexnal 3100 |
. . . . . 6
β’
(βπ β
π« (Baseβπ)
Β¬ (π linDepS π β βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£)) β Β¬ βπ β π« (Baseβπ)(π linDepS π β βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£))) |
33 | 31, 32 | bitri 274 |
. . . . 5
β’
(βπ β
π« (Baseβπ)((π linDepS π β§ Β¬ βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£)) β¨ (βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£) β§ Β¬ π linDepS π)) β Β¬ βπ β π« (Baseβπ)(π linDepS π β βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£))) |
34 | 33 | rexbii 3094 |
. . . 4
β’
(βπ β
LMod βπ β
π« (Baseβπ)((π linDepS π β§ Β¬ βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£)) β¨ (βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£) β§ Β¬ π linDepS π)) β βπ β LMod Β¬ βπ β π« (Baseβπ)(π linDepS π β βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£))) |
35 | | rexnal 3100 |
. . . 4
β’
(βπ β
LMod Β¬ βπ β
π« (Baseβπ)(π linDepS π β βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£)) β Β¬ βπ β LMod βπ β π« (Baseβπ)(π linDepS π β βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£))) |
36 | 34, 35 | bitri 274 |
. . 3
β’
(βπ β
LMod βπ β
π« (Baseβπ)((π linDepS π β§ Β¬ βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£)) β¨ (βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£) β§ Β¬ π linDepS π)) β Β¬ βπ β LMod βπ β π« (Baseβπ)(π linDepS π β βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£))) |
37 | 28, 36 | mpbi 229 |
. 2
β’ Β¬
βπ β LMod
βπ β π«
(Baseβπ)(π linDepS π β βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£)) |
38 | 8, 37 | pm3.2i 471 |
1
β’
(βπ β
LVec βπ β
π« (Baseβπ)(π linDepS π β βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£)) β§ Β¬ βπ β LMod βπ β π« (Baseβπ)(π linDepS π β βπ£ β π βπ β ((Baseβ(Scalarβπ)) βm (π β {π£}))(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)(π β {π£})) = π£))) |