Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldepslinc Structured version   Visualization version   GIF version

Theorem ldepslinc 45738
Description: For (left) vector spaces, isldepslvec2 45714 provides an alternative definition of being a linearly dependent subset, whereas ldepsnlinc 45737 indicates that there is not an analogous alternative definition for arbitrary (left) modules. (Contributed by AV, 25-May-2019.) (Revised by AV, 30-Jul-2019.)
Assertion
Ref Expression
ldepslinc (∀𝑚 ∈ LVec ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∧ ¬ ∀𝑚 ∈ LMod ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)))
Distinct variable group:   𝑓,𝑚,𝑠,𝑣

Proof of Theorem ldepslinc
StepHypRef Expression
1 eqid 2738 . . . . 5 (Base‘𝑚) = (Base‘𝑚)
2 eqid 2738 . . . . 5 (0g𝑚) = (0g𝑚)
3 eqid 2738 . . . . 5 (Scalar‘𝑚) = (Scalar‘𝑚)
4 eqid 2738 . . . . 5 (Base‘(Scalar‘𝑚)) = (Base‘(Scalar‘𝑚))
5 eqid 2738 . . . . 5 (0g‘(Scalar‘𝑚)) = (0g‘(Scalar‘𝑚))
61, 2, 3, 4, 5isldepslvec2 45714 . . . 4 ((𝑚 ∈ LVec ∧ 𝑠 ∈ 𝒫 (Base‘𝑚)) → (∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ↔ 𝑠 linDepS 𝑚))
76bicomd 222 . . 3 ((𝑚 ∈ LVec ∧ 𝑠 ∈ 𝒫 (Base‘𝑚)) → (𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)))
87rgen2 3126 . 2 𝑚 ∈ LVec ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣))
9 ldepsnlinc 45737 . . . . . . 7 𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣))
10 df-ne 2943 . . . . . . . . . . . . . . 15 ((𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣 ↔ ¬ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)
1110imbi2i 335 . . . . . . . . . . . . . 14 ((𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣) ↔ (𝑓 finSupp (0g‘(Scalar‘𝑚)) → ¬ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣))
12 imnan 399 . . . . . . . . . . . . . 14 ((𝑓 finSupp (0g‘(Scalar‘𝑚)) → ¬ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ↔ ¬ (𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣))
1311, 12bitri 274 . . . . . . . . . . . . 13 ((𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣) ↔ ¬ (𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣))
1413ralbii 3090 . . . . . . . . . . . 12 (∀𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣) ↔ ∀𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣})) ¬ (𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣))
15 ralnex 3163 . . . . . . . . . . . 12 (∀𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣})) ¬ (𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ↔ ¬ ∃𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣))
1614, 15bitri 274 . . . . . . . . . . 11 (∀𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣) ↔ ¬ ∃𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣))
1716ralbii 3090 . . . . . . . . . 10 (∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣) ↔ ∀𝑣𝑠 ¬ ∃𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣))
18 ralnex 3163 . . . . . . . . . 10 (∀𝑣𝑠 ¬ ∃𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ↔ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣))
1917, 18bitri 274 . . . . . . . . 9 (∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣) ↔ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣))
2019anbi2i 622 . . . . . . . 8 ((𝑠 linDepS 𝑚 ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣)) ↔ (𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)))
21202rexbii 3178 . . . . . . 7 (∃𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣)) ↔ ∃𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)))
229, 21mpbi 229 . . . . . 6 𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣))
2322orci 861 . . . . 5 (∃𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ ∃𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)(∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚))
24 r19.43 3277 . . . . 5 (∃𝑚 ∈ LMod (∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ ∃𝑠 ∈ 𝒫 (Base‘𝑚)(∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚)) ↔ (∃𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ ∃𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)(∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚)))
2523, 24mpbir 230 . . . 4 𝑚 ∈ LMod (∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ ∃𝑠 ∈ 𝒫 (Base‘𝑚)(∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚))
26 r19.43 3277 . . . . 5 (∃𝑠 ∈ 𝒫 (Base‘𝑚)((𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ (∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚)) ↔ (∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ ∃𝑠 ∈ 𝒫 (Base‘𝑚)(∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚)))
2726rexbii 3177 . . . 4 (∃𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)((𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ (∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚)) ↔ ∃𝑚 ∈ LMod (∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ ∃𝑠 ∈ 𝒫 (Base‘𝑚)(∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚)))
2825, 27mpbir 230 . . 3 𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)((𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ (∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚))
29 xor 1011 . . . . . . . 8 (¬ (𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ↔ ((𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ (∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚)))
3029bicomi 223 . . . . . . 7 (((𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ (∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚)) ↔ ¬ (𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)))
3130rexbii 3177 . . . . . 6 (∃𝑠 ∈ 𝒫 (Base‘𝑚)((𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ (∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚)) ↔ ∃𝑠 ∈ 𝒫 (Base‘𝑚) ¬ (𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)))
32 rexnal 3165 . . . . . 6 (∃𝑠 ∈ 𝒫 (Base‘𝑚) ¬ (𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ↔ ¬ ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)))
3331, 32bitri 274 . . . . 5 (∃𝑠 ∈ 𝒫 (Base‘𝑚)((𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ (∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚)) ↔ ¬ ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)))
3433rexbii 3177 . . . 4 (∃𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)((𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ (∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚)) ↔ ∃𝑚 ∈ LMod ¬ ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)))
35 rexnal 3165 . . . 4 (∃𝑚 ∈ LMod ¬ ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ↔ ¬ ∀𝑚 ∈ LMod ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)))
3634, 35bitri 274 . . 3 (∃𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)((𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ (∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚)) ↔ ¬ ∀𝑚 ∈ LMod ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)))
3728, 36mpbi 229 . 2 ¬ ∀𝑚 ∈ LMod ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣))
388, 37pm3.2i 470 1 (∀𝑚 ∈ LVec ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∧ ¬ ∀𝑚 ∈ LMod ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  cdif 3880  𝒫 cpw 4530  {csn 4558   class class class wbr 5070  cfv 6418  (class class class)co 7255  m cmap 8573   finSupp cfsupp 9058  Basecbs 16840  Scalarcsca 16891  0gc0g 17067  LModclmod 20038  LVecclvec 20279   linC clinc 45633   linDepS clindeps 45670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-prm 16305  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-0g 17069  df-gsum 17070  df-prds 17075  df-pws 17077  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-drng 19908  df-subrg 19937  df-lmod 20040  df-lss 20109  df-lvec 20280  df-sra 20349  df-rgmod 20350  df-nzr 20442  df-cnfld 20511  df-zring 20583  df-dsmm 20849  df-frlm 20864  df-linc 45635  df-lininds 45671  df-lindeps 45673
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator