Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldepslinc Structured version   Visualization version   GIF version

Theorem ldepslinc 48498
Description: For (left) vector spaces, isldepslvec2 48474 provides an alternative definition of being a linearly dependent subset, whereas ldepsnlinc 48497 indicates that there is not an analogous alternative definition for arbitrary (left) modules. (Contributed by AV, 25-May-2019.) (Revised by AV, 30-Jul-2019.)
Assertion
Ref Expression
ldepslinc (∀𝑚 ∈ LVec ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∧ ¬ ∀𝑚 ∈ LMod ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)))
Distinct variable group:   𝑓,𝑚,𝑠,𝑣

Proof of Theorem ldepslinc
StepHypRef Expression
1 eqid 2729 . . . . 5 (Base‘𝑚) = (Base‘𝑚)
2 eqid 2729 . . . . 5 (0g𝑚) = (0g𝑚)
3 eqid 2729 . . . . 5 (Scalar‘𝑚) = (Scalar‘𝑚)
4 eqid 2729 . . . . 5 (Base‘(Scalar‘𝑚)) = (Base‘(Scalar‘𝑚))
5 eqid 2729 . . . . 5 (0g‘(Scalar‘𝑚)) = (0g‘(Scalar‘𝑚))
61, 2, 3, 4, 5isldepslvec2 48474 . . . 4 ((𝑚 ∈ LVec ∧ 𝑠 ∈ 𝒫 (Base‘𝑚)) → (∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ↔ 𝑠 linDepS 𝑚))
76bicomd 223 . . 3 ((𝑚 ∈ LVec ∧ 𝑠 ∈ 𝒫 (Base‘𝑚)) → (𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)))
87rgen2 3177 . 2 𝑚 ∈ LVec ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣))
9 ldepsnlinc 48497 . . . . . . 7 𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣))
10 df-ne 2926 . . . . . . . . . . . . . . 15 ((𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣 ↔ ¬ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)
1110imbi2i 336 . . . . . . . . . . . . . 14 ((𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣) ↔ (𝑓 finSupp (0g‘(Scalar‘𝑚)) → ¬ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣))
12 imnan 399 . . . . . . . . . . . . . 14 ((𝑓 finSupp (0g‘(Scalar‘𝑚)) → ¬ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ↔ ¬ (𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣))
1311, 12bitri 275 . . . . . . . . . . . . 13 ((𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣) ↔ ¬ (𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣))
1413ralbii 3075 . . . . . . . . . . . 12 (∀𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣) ↔ ∀𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣})) ¬ (𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣))
15 ralnex 3055 . . . . . . . . . . . 12 (∀𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣})) ¬ (𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ↔ ¬ ∃𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣))
1614, 15bitri 275 . . . . . . . . . . 11 (∀𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣) ↔ ¬ ∃𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣))
1716ralbii 3075 . . . . . . . . . 10 (∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣) ↔ ∀𝑣𝑠 ¬ ∃𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣))
18 ralnex 3055 . . . . . . . . . 10 (∀𝑣𝑠 ¬ ∃𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ↔ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣))
1917, 18bitri 275 . . . . . . . . 9 (∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣) ↔ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣))
2019anbi2i 623 . . . . . . . 8 ((𝑠 linDepS 𝑚 ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣)) ↔ (𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)))
21202rexbii 3109 . . . . . . 7 (∃𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣)) ↔ ∃𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)))
229, 21mpbi 230 . . . . . 6 𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣))
2322orci 865 . . . . 5 (∃𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ ∃𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)(∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚))
24 r19.43 3101 . . . . 5 (∃𝑚 ∈ LMod (∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ ∃𝑠 ∈ 𝒫 (Base‘𝑚)(∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚)) ↔ (∃𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ ∃𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)(∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚)))
2523, 24mpbir 231 . . . 4 𝑚 ∈ LMod (∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ ∃𝑠 ∈ 𝒫 (Base‘𝑚)(∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚))
26 r19.43 3101 . . . . 5 (∃𝑠 ∈ 𝒫 (Base‘𝑚)((𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ (∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚)) ↔ (∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ ∃𝑠 ∈ 𝒫 (Base‘𝑚)(∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚)))
2726rexbii 3076 . . . 4 (∃𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)((𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ (∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚)) ↔ ∃𝑚 ∈ LMod (∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ ∃𝑠 ∈ 𝒫 (Base‘𝑚)(∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚)))
2825, 27mpbir 231 . . 3 𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)((𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ (∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚))
29 xor 1016 . . . . . . . 8 (¬ (𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ↔ ((𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ (∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚)))
3029bicomi 224 . . . . . . 7 (((𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ (∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚)) ↔ ¬ (𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)))
3130rexbii 3076 . . . . . 6 (∃𝑠 ∈ 𝒫 (Base‘𝑚)((𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ (∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚)) ↔ ∃𝑠 ∈ 𝒫 (Base‘𝑚) ¬ (𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)))
32 rexnal 3082 . . . . . 6 (∃𝑠 ∈ 𝒫 (Base‘𝑚) ¬ (𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ↔ ¬ ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)))
3331, 32bitri 275 . . . . 5 (∃𝑠 ∈ 𝒫 (Base‘𝑚)((𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ (∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚)) ↔ ¬ ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)))
3433rexbii 3076 . . . 4 (∃𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)((𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ (∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚)) ↔ ∃𝑚 ∈ LMod ¬ ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)))
35 rexnal 3082 . . . 4 (∃𝑚 ∈ LMod ¬ ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ↔ ¬ ∀𝑚 ∈ LMod ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)))
3634, 35bitri 275 . . 3 (∃𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)((𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ (∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚)) ↔ ¬ ∀𝑚 ∈ LMod ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)))
3728, 36mpbi 230 . 2 ¬ ∀𝑚 ∈ LMod ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣))
388, 37pm3.2i 470 1 (∀𝑚 ∈ LVec ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∧ ¬ ∀𝑚 ∈ LMod ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cdif 3911  𝒫 cpw 4563  {csn 4589   class class class wbr 5107  cfv 6511  (class class class)co 7387  m cmap 8799   finSupp cfsupp 9312  Basecbs 17179  Scalarcsca 17223  0gc0g 17402  LModclmod 20766  LVecclvec 21009   linC clinc 48393   linDepS clindeps 48430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-prm 16642  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-nzr 20422  df-subrng 20455  df-subrg 20479  df-drng 20640  df-lmod 20768  df-lss 20838  df-lvec 21010  df-sra 21080  df-rgmod 21081  df-cnfld 21265  df-zring 21357  df-dsmm 21641  df-frlm 21656  df-linc 48395  df-lininds 48431  df-lindeps 48433
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator