MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfcndreg Structured version   Visualization version   GIF version

Theorem zfcndreg 10658
Description: Axiom of Regularity ax-reg 9633, reproved from conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 2376. (Contributed by NM, 15-Aug-2003.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
zfcndreg (∃𝑦 𝑦𝑥 → ∃𝑦(𝑦𝑥 ∧ ∀𝑧(𝑧𝑦 → ¬ 𝑧𝑥)))
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem zfcndreg
StepHypRef Expression
1 nfe1 2149 . 2 𝑦𝑦(𝑦𝑥 ∧ ∀𝑧(𝑧𝑦 → ¬ 𝑧𝑥))
2 axregnd 10645 . 2 (𝑦𝑥 → ∃𝑦(𝑦𝑥 ∧ ∀𝑧(𝑧𝑦 → ¬ 𝑧𝑥)))
31, 2exlimi 2216 1 (∃𝑦 𝑦𝑥 → ∃𝑦(𝑦𝑥 ∧ ∀𝑧(𝑧𝑦 → ¬ 𝑧𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1537  wex 1778  wcel 2107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-13 2376  ax-ext 2707  ax-sep 5295  ax-pr 5431  ax-reg 9633
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ral 3061  df-rex 3070  df-v 3481  df-un 3955  df-sn 4626  df-pr 4628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator