MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfcndreg Structured version   Visualization version   GIF version

Theorem zfcndreg 10304
Description: Axiom of Regularity ax-reg 9281, reproved from conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 15-Aug-2003.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
zfcndreg (∃𝑦 𝑦𝑥 → ∃𝑦(𝑦𝑥 ∧ ∀𝑧(𝑧𝑦 → ¬ 𝑧𝑥)))
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem zfcndreg
StepHypRef Expression
1 nfe1 2149 . 2 𝑦𝑦(𝑦𝑥 ∧ ∀𝑧(𝑧𝑦 → ¬ 𝑧𝑥))
2 axregnd 10291 . 2 (𝑦𝑥 → ∃𝑦(𝑦𝑥 ∧ ∀𝑧(𝑧𝑦 → ¬ 𝑧𝑥)))
31, 2exlimi 2213 1 (∃𝑦 𝑦𝑥 → ∃𝑦(𝑦𝑥 ∧ ∀𝑧(𝑧𝑦 → ¬ 𝑧𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1537  wex 1783  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-13 2372  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-reg 9281
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-sn 4559  df-pr 4561
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator