| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zfcndreg | Structured version Visualization version GIF version | ||
| Description: Axiom of Regularity ax-reg 9545, reproved from conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 2370. (Contributed by NM, 15-Aug-2003.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| zfcndreg | ⊢ (∃𝑦 𝑦 ∈ 𝑥 → ∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfe1 2151 | . 2 ⊢ Ⅎ𝑦∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥)) | |
| 2 | axregnd 10557 | . 2 ⊢ (𝑦 ∈ 𝑥 → ∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) | |
| 3 | 1, 2 | exlimi 2218 | 1 ⊢ (∃𝑦 𝑦 ∈ 𝑥 → ∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1538 ∃wex 1779 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2370 ax-ext 2701 ax-sep 5251 ax-pr 5387 ax-reg 9545 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-v 3449 df-un 3919 df-sn 4590 df-pr 4592 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |