New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > abbi | GIF version |
Description: Equivalent wff's correspond to equal class abstractions. (Contributed by NM, 25-Nov-2013.) (Revised by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
abbi | ⊢ (∀x(φ ↔ ψ) ↔ {x ∣ φ} = {x ∣ ψ}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2347 | . 2 ⊢ ({x ∣ φ} = {x ∣ ψ} ↔ ∀y(y ∈ {x ∣ φ} ↔ y ∈ {x ∣ ψ})) | |
2 | nfsab1 2343 | . . . 4 ⊢ Ⅎx y ∈ {x ∣ φ} | |
3 | nfsab1 2343 | . . . 4 ⊢ Ⅎx y ∈ {x ∣ ψ} | |
4 | 2, 3 | nfbi 1834 | . . 3 ⊢ Ⅎx(y ∈ {x ∣ φ} ↔ y ∈ {x ∣ ψ}) |
5 | nfv 1619 | . . 3 ⊢ Ⅎy(φ ↔ ψ) | |
6 | df-clab 2340 | . . . . 5 ⊢ (y ∈ {x ∣ φ} ↔ [y / x]φ) | |
7 | sbequ12r 1920 | . . . . 5 ⊢ (y = x → ([y / x]φ ↔ φ)) | |
8 | 6, 7 | syl5bb 248 | . . . 4 ⊢ (y = x → (y ∈ {x ∣ φ} ↔ φ)) |
9 | df-clab 2340 | . . . . 5 ⊢ (y ∈ {x ∣ ψ} ↔ [y / x]ψ) | |
10 | sbequ12r 1920 | . . . . 5 ⊢ (y = x → ([y / x]ψ ↔ ψ)) | |
11 | 9, 10 | syl5bb 248 | . . . 4 ⊢ (y = x → (y ∈ {x ∣ ψ} ↔ ψ)) |
12 | 8, 11 | bibi12d 312 | . . 3 ⊢ (y = x → ((y ∈ {x ∣ φ} ↔ y ∈ {x ∣ ψ}) ↔ (φ ↔ ψ))) |
13 | 4, 5, 12 | cbval 1984 | . 2 ⊢ (∀y(y ∈ {x ∣ φ} ↔ y ∈ {x ∣ ψ}) ↔ ∀x(φ ↔ ψ)) |
14 | 1, 13 | bitr2i 241 | 1 ⊢ (∀x(φ ↔ ψ) ↔ {x ∣ φ} = {x ∣ ψ}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∀wal 1540 = wceq 1642 [wsb 1648 ∈ wcel 1710 {cab 2339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 |
This theorem is referenced by: abbii 2466 abbid 2467 rabbi 2790 dfeu2 4334 dfiota2 4341 iotabi 4349 uniabio 4350 iotanul 4355 |
Copyright terms: Public domain | W3C validator |