New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > addceq2d | GIF version |
Description: Equality deduction for cardinal addition. (Contributed by SF, 3-Feb-2015.) |
Ref | Expression |
---|---|
addceqd.1 | ⊢ (φ → A = B) |
Ref | Expression |
---|---|
addceq2d | ⊢ (φ → (C +c A) = (C +c B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addceqd.1 | . 2 ⊢ (φ → A = B) | |
2 | addceq2 4385 | . 2 ⊢ (A = B → (C +c A) = (C +c B)) | |
3 | 1, 2 | syl 15 | 1 ⊢ (φ → (C +c A) = (C +c B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 +c cplc 4376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-pw 3725 df-sn 3742 df-pr 3743 df-opk 4059 df-1c 4137 df-pw1 4138 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-sik 4193 df-ssetk 4194 df-addc 4379 |
This theorem is referenced by: nchoicelem14 6303 |
Copyright terms: Public domain | W3C validator |