New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > addceq2d | GIF version |
Description: Equality deduction for cardinal addition. (Contributed by SF, 3-Feb-2015.) |
Ref | Expression |
---|---|
addceqd.1 | ⊢ (φ → A = B) |
Ref | Expression |
---|---|
addceq2d | ⊢ (φ → (C +c A) = (C +c B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addceqd.1 | . 2 ⊢ (φ → A = B) | |
2 | addceq2 4384 | . 2 ⊢ (A = B → (C +c A) = (C +c B)) | |
3 | 1, 2 | syl 15 | 1 ⊢ (φ → (C +c A) = (C +c B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 +c cplc 4375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-rex 2620 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-nul 3551 df-pw 3724 df-sn 3741 df-pr 3742 df-opk 4058 df-1c 4136 df-pw1 4137 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-sik 4192 df-ssetk 4193 df-addc 4378 |
This theorem is referenced by: nchoicelem14 6302 |
Copyright terms: Public domain | W3C validator |