New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > addceq2 | GIF version |
Description: Equality law for cardinal addition. (Contributed by SF, 15-Jan-2015.) |
Ref | Expression |
---|---|
addceq2 | ⊢ (A = B → (C +c A) = (C +c B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw1eq 4144 | . . . . 5 ⊢ (A = B → ℘1A = ℘1B) | |
2 | pw1eq 4144 | . . . . 5 ⊢ (℘1A = ℘1B → ℘1℘1A = ℘1℘1B) | |
3 | 1, 2 | syl 15 | . . . 4 ⊢ (A = B → ℘1℘1A = ℘1℘1B) |
4 | 3 | imakeq2d 4230 | . . 3 ⊢ (A = B → (( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘1A) = (( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘1B)) |
5 | 4 | imakeq1d 4229 | . 2 ⊢ (A = B → ((( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘1A) “k C) = ((( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘1B) “k C)) |
6 | dfaddc2 4382 | . 2 ⊢ (C +c A) = ((( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘1A) “k C) | |
7 | dfaddc2 4382 | . 2 ⊢ (C +c B) = ((( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c)) “k ℘1℘1B) “k C) | |
8 | 5, 6, 7 | 3eqtr4g 2410 | 1 ⊢ (A = B → (C +c A) = (C +c B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ∼ ccompl 3206 ∖ cdif 3207 ∪ cun 3208 ∩ cin 3209 ⊕ csymdif 3210 1cc1c 4135 ℘1cpw1 4136 Ins2k cins2k 4177 Ins3k cins3k 4178 “k cimak 4180 SIk csik 4182 Sk cssetk 4184 +c cplc 4376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-pw 3725 df-sn 3742 df-pr 3743 df-opk 4059 df-1c 4137 df-pw1 4138 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-sik 4193 df-ssetk 4194 df-addc 4379 |
This theorem is referenced by: addceq12 4386 addceq2i 4388 addceq2d 4391 nncaddccl 4420 lefinaddc 4451 addcnnul 4454 preaddccan2lem1 4455 preaddccan2 4456 nulge 4457 leltfintr 4459 ltfintr 4460 ltfinp1 4463 lefinlteq 4464 lefinrflx 4468 ltlefin 4469 tfinltfinlem1 4501 eventfin 4518 oddtfin 4519 sfinltfin 4536 braddcfn 5827 dflec2 6211 addceq0 6220 tlecg 6231 nclenn 6250 csucex 6260 addccan2nclem2 6265 addccan2nc 6266 ncslesuc 6268 nchoicelem17 6306 |
Copyright terms: Public domain | W3C validator |