NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  addceq2 GIF version

Theorem addceq2 4385
Description: Equality law for cardinal addition. (Contributed by SF, 15-Jan-2015.)
Assertion
Ref Expression
addceq2 (A = B → (C +c A) = (C +c B))

Proof of Theorem addceq2
StepHypRef Expression
1 pw1eq 4144 . . . . 5 (A = B1A = 1B)
2 pw1eq 4144 . . . . 5 (1A = 1B11A = 11B)
31, 2syl 15 . . . 4 (A = B11A = 11B)
43imakeq2d 4230 . . 3 (A = B → (( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 11A) = (( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 11B))
54imakeq1d 4229 . 2 (A = B → ((( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 11A) “k C) = ((( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 11B) “k C))
6 dfaddc2 4382 . 2 (C +c A) = ((( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 11A) “k C)
7 dfaddc2 4382 . 2 (C +c B) = ((( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 11B) “k C)
85, 6, 73eqtr4g 2410 1 (A = B → (C +c A) = (C +c B))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642  ccompl 3206   cdif 3207  cun 3208  cin 3209  csymdif 3210  1cc1c 4135  1cpw1 4136   Ins2k cins2k 4177   Ins3k cins3k 4178  k cimak 4180   SIk csik 4182   Sk cssetk 4184   +c cplc 4376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-pw 3725  df-sn 3742  df-pr 3743  df-opk 4059  df-1c 4137  df-pw1 4138  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-sik 4193  df-ssetk 4194  df-addc 4379
This theorem is referenced by:  addceq12  4386  addceq2i  4388  addceq2d  4391  nncaddccl  4420  lefinaddc  4451  addcnnul  4454  preaddccan2lem1  4455  preaddccan2  4456  nulge  4457  leltfintr  4459  ltfintr  4460  ltfinp1  4463  lefinlteq  4464  lefinrflx  4468  ltlefin  4469  tfinltfinlem1  4501  eventfin  4518  oddtfin  4519  sfinltfin  4536  braddcfn  5827  dflec2  6211  addceq0  6220  tlecg  6231  nclenn  6250  csucex  6260  addccan2nclem2  6265  addccan2nc  6266  ncslesuc  6268  nchoicelem17  6306
  Copyright terms: Public domain W3C validator