![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > dfuni12 | GIF version |
Description: Alternate definition of unit union. (Contributed by SF, 15-Mar-2015.) |
Ref | Expression |
---|---|
dfuni12 | ⊢ ⋃1A = P6 (V ×k A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.27v 1894 | . . . 4 ⊢ (∀z(z ∈ V ∧ {x} ∈ A) ↔ (∀z z ∈ V ∧ {x} ∈ A)) | |
2 | vex 2862 | . . . . . 6 ⊢ z ∈ V | |
3 | snex 4111 | . . . . . 6 ⊢ {x} ∈ V | |
4 | 2, 3 | opkelxpk 4248 | . . . . 5 ⊢ (⟪z, {x}⟫ ∈ (V ×k A) ↔ (z ∈ V ∧ {x} ∈ A)) |
5 | 4 | albii 1566 | . . . 4 ⊢ (∀z⟪z, {x}⟫ ∈ (V ×k A) ↔ ∀z(z ∈ V ∧ {x} ∈ A)) |
6 | 2 | ax-gen 1546 | . . . . 5 ⊢ ∀z z ∈ V |
7 | 6 | biantrur 492 | . . . 4 ⊢ ({x} ∈ A ↔ (∀z z ∈ V ∧ {x} ∈ A)) |
8 | 1, 5, 7 | 3bitr4ri 269 | . . 3 ⊢ ({x} ∈ A ↔ ∀z⟪z, {x}⟫ ∈ (V ×k A)) |
9 | vex 2862 | . . . 4 ⊢ x ∈ V | |
10 | 9 | eluni1 4173 | . . 3 ⊢ (x ∈ ⋃1A ↔ {x} ∈ A) |
11 | elp6 4263 | . . . 4 ⊢ (x ∈ V → (x ∈ P6 (V ×k A) ↔ ∀z⟪z, {x}⟫ ∈ (V ×k A))) | |
12 | 9, 11 | ax-mp 8 | . . 3 ⊢ (x ∈ P6 (V ×k A) ↔ ∀z⟪z, {x}⟫ ∈ (V ×k A)) |
13 | 8, 10, 12 | 3bitr4i 268 | . 2 ⊢ (x ∈ ⋃1A ↔ x ∈ P6 (V ×k A)) |
14 | 13 | eqriv 2350 | 1 ⊢ ⋃1A = P6 (V ×k A) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∀wal 1540 = wceq 1642 ∈ wcel 1710 Vcvv 2859 {csn 3737 ⟪copk 4057 ⋃1cuni1 4133 ×k cxpk 4174 P6 cp6 4178 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-ss 3259 df-nul 3551 df-sn 3741 df-pr 3742 df-uni 3892 df-opk 4058 df-1c 4136 df-uni1 4138 df-xpk 4185 df-p6 4191 |
This theorem is referenced by: uni1exg 4292 |
Copyright terms: Public domain | W3C validator |