NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dmtxp GIF version

Theorem dmtxp 5803
Description: The domain of a tail cross product is the intersection of the domains of its arguments. (Contributed by SF, 18-Feb-2015.)
Assertion
Ref Expression
dmtxp dom (RS) = (dom R ∩ dom S)

Proof of Theorem dmtxp
Dummy variables x p y z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brtxp 5784 . . . . . 6 (x(RS)pyz(p = y, z xRy xSz))
21exbii 1582 . . . . 5 (p x(RS)ppyz(p = y, z xRy xSz))
3 exrot3 1744 . . . . 5 (pyz(p = y, z xRy xSz) ↔ yzp(p = y, z xRy xSz))
42, 3bitri 240 . . . 4 (p x(RS)pyzp(p = y, z xRy xSz))
5 3anass 938 . . . . . . . 8 ((p = y, z xRy xSz) ↔ (p = y, z (xRy xSz)))
65exbii 1582 . . . . . . 7 (p(p = y, z xRy xSz) ↔ p(p = y, z (xRy xSz)))
7 19.41v 1901 . . . . . . 7 (p(p = y, z (xRy xSz)) ↔ (p p = y, z (xRy xSz)))
86, 7bitri 240 . . . . . 6 (p(p = y, z xRy xSz) ↔ (p p = y, z (xRy xSz)))
9 vex 2863 . . . . . . . . . 10 y V
10 vex 2863 . . . . . . . . . 10 z V
119, 10opex 4589 . . . . . . . . 9 y, z V
1211isseti 2866 . . . . . . . 8 p p = y, z
1312biantrur 492 . . . . . . 7 ((xRy xSz) ↔ (p p = y, z (xRy xSz)))
1413bicomi 193 . . . . . 6 ((p p = y, z (xRy xSz)) ↔ (xRy xSz))
158, 14bitri 240 . . . . 5 (p(p = y, z xRy xSz) ↔ (xRy xSz))
16152exbii 1583 . . . 4 (yzp(p = y, z xRy xSz) ↔ yz(xRy xSz))
174, 16bitri 240 . . 3 (p x(RS)pyz(xRy xSz))
18 eldm 4899 . . 3 (x dom (RS) ↔ p x(RS)p)
19 elin 3220 . . . 4 (x (dom R ∩ dom S) ↔ (x dom R x dom S))
20 eldm 4899 . . . . . 6 (x dom Ry xRy)
21 eldm 4899 . . . . . 6 (x dom Sz xSz)
2220, 21anbi12i 678 . . . . 5 ((x dom R x dom S) ↔ (y xRy z xSz))
23 eeanv 1913 . . . . . 6 (yz(xRy xSz) ↔ (y xRy z xSz))
2423bicomi 193 . . . . 5 ((y xRy z xSz) ↔ yz(xRy xSz))
2522, 24bitri 240 . . . 4 ((x dom R x dom S) ↔ yz(xRy xSz))
2619, 25bitri 240 . . 3 (x (dom R ∩ dom S) ↔ yz(xRy xSz))
2717, 18, 263bitr4i 268 . 2 (x dom (RS) ↔ x (dom R ∩ dom S))
2827eqriv 2350 1 dom (RS) = (dom R ∩ dom S)
Colors of variables: wff setvar class
Syntax hints:   wa 358   w3a 934  wex 1541   = wceq 1642   wcel 1710  cin 3209  cop 4562   class class class wbr 4640  dom cdm 4773  ctxp 5736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-co 4727  df-ima 4728  df-cnv 4786  df-rn 4787  df-dm 4788  df-2nd 4798  df-txp 5737
This theorem is referenced by:  fntxp  5805
  Copyright terms: Public domain W3C validator