New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dmtxp | GIF version |
Description: The domain of a tail cross product is the intersection of the domains of its arguments. (Contributed by SF, 18-Feb-2015.) |
Ref | Expression |
---|---|
dmtxp | ⊢ dom (R ⊗ S) = (dom R ∩ dom S) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brtxp 5784 | . . . . . 6 ⊢ (x(R ⊗ S)p ↔ ∃y∃z(p = 〈y, z〉 ∧ xRy ∧ xSz)) | |
2 | 1 | exbii 1582 | . . . . 5 ⊢ (∃p x(R ⊗ S)p ↔ ∃p∃y∃z(p = 〈y, z〉 ∧ xRy ∧ xSz)) |
3 | exrot3 1744 | . . . . 5 ⊢ (∃p∃y∃z(p = 〈y, z〉 ∧ xRy ∧ xSz) ↔ ∃y∃z∃p(p = 〈y, z〉 ∧ xRy ∧ xSz)) | |
4 | 2, 3 | bitri 240 | . . . 4 ⊢ (∃p x(R ⊗ S)p ↔ ∃y∃z∃p(p = 〈y, z〉 ∧ xRy ∧ xSz)) |
5 | 3anass 938 | . . . . . . . 8 ⊢ ((p = 〈y, z〉 ∧ xRy ∧ xSz) ↔ (p = 〈y, z〉 ∧ (xRy ∧ xSz))) | |
6 | 5 | exbii 1582 | . . . . . . 7 ⊢ (∃p(p = 〈y, z〉 ∧ xRy ∧ xSz) ↔ ∃p(p = 〈y, z〉 ∧ (xRy ∧ xSz))) |
7 | 19.41v 1901 | . . . . . . 7 ⊢ (∃p(p = 〈y, z〉 ∧ (xRy ∧ xSz)) ↔ (∃p p = 〈y, z〉 ∧ (xRy ∧ xSz))) | |
8 | 6, 7 | bitri 240 | . . . . . 6 ⊢ (∃p(p = 〈y, z〉 ∧ xRy ∧ xSz) ↔ (∃p p = 〈y, z〉 ∧ (xRy ∧ xSz))) |
9 | vex 2863 | . . . . . . . . . 10 ⊢ y ∈ V | |
10 | vex 2863 | . . . . . . . . . 10 ⊢ z ∈ V | |
11 | 9, 10 | opex 4589 | . . . . . . . . 9 ⊢ 〈y, z〉 ∈ V |
12 | 11 | isseti 2866 | . . . . . . . 8 ⊢ ∃p p = 〈y, z〉 |
13 | 12 | biantrur 492 | . . . . . . 7 ⊢ ((xRy ∧ xSz) ↔ (∃p p = 〈y, z〉 ∧ (xRy ∧ xSz))) |
14 | 13 | bicomi 193 | . . . . . 6 ⊢ ((∃p p = 〈y, z〉 ∧ (xRy ∧ xSz)) ↔ (xRy ∧ xSz)) |
15 | 8, 14 | bitri 240 | . . . . 5 ⊢ (∃p(p = 〈y, z〉 ∧ xRy ∧ xSz) ↔ (xRy ∧ xSz)) |
16 | 15 | 2exbii 1583 | . . . 4 ⊢ (∃y∃z∃p(p = 〈y, z〉 ∧ xRy ∧ xSz) ↔ ∃y∃z(xRy ∧ xSz)) |
17 | 4, 16 | bitri 240 | . . 3 ⊢ (∃p x(R ⊗ S)p ↔ ∃y∃z(xRy ∧ xSz)) |
18 | eldm 4899 | . . 3 ⊢ (x ∈ dom (R ⊗ S) ↔ ∃p x(R ⊗ S)p) | |
19 | elin 3220 | . . . 4 ⊢ (x ∈ (dom R ∩ dom S) ↔ (x ∈ dom R ∧ x ∈ dom S)) | |
20 | eldm 4899 | . . . . . 6 ⊢ (x ∈ dom R ↔ ∃y xRy) | |
21 | eldm 4899 | . . . . . 6 ⊢ (x ∈ dom S ↔ ∃z xSz) | |
22 | 20, 21 | anbi12i 678 | . . . . 5 ⊢ ((x ∈ dom R ∧ x ∈ dom S) ↔ (∃y xRy ∧ ∃z xSz)) |
23 | eeanv 1913 | . . . . . 6 ⊢ (∃y∃z(xRy ∧ xSz) ↔ (∃y xRy ∧ ∃z xSz)) | |
24 | 23 | bicomi 193 | . . . . 5 ⊢ ((∃y xRy ∧ ∃z xSz) ↔ ∃y∃z(xRy ∧ xSz)) |
25 | 22, 24 | bitri 240 | . . . 4 ⊢ ((x ∈ dom R ∧ x ∈ dom S) ↔ ∃y∃z(xRy ∧ xSz)) |
26 | 19, 25 | bitri 240 | . . 3 ⊢ (x ∈ (dom R ∩ dom S) ↔ ∃y∃z(xRy ∧ xSz)) |
27 | 17, 18, 26 | 3bitr4i 268 | . 2 ⊢ (x ∈ dom (R ⊗ S) ↔ x ∈ (dom R ∩ dom S)) |
28 | 27 | eqriv 2350 | 1 ⊢ dom (R ⊗ S) = (dom R ∩ dom S) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 358 ∧ w3a 934 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ∩ cin 3209 〈cop 4562 class class class wbr 4640 dom cdm 4773 ⊗ ctxp 5736 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-co 4727 df-ima 4728 df-cnv 4786 df-rn 4787 df-dm 4788 df-2nd 4798 df-txp 5737 |
This theorem is referenced by: fntxp 5805 |
Copyright terms: Public domain | W3C validator |