New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > caovord | GIF version |
Description: Convert an operation ordering law to class notation. (Contributed by set.mm contributors, 19-Feb-1996.) |
Ref | Expression |
---|---|
caovord.1 | ⊢ A ∈ V |
caovord.2 | ⊢ B ∈ V |
caovord.3 | ⊢ (z ∈ S → (xRy ↔ (zFx)R(zFy))) |
Ref | Expression |
---|---|
caovord | ⊢ (C ∈ S → (ARB ↔ (CFA)R(CFB))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 5531 | . . . 4 ⊢ (z = C → (zFA) = (CFA)) | |
2 | oveq1 5531 | . . . 4 ⊢ (z = C → (zFB) = (CFB)) | |
3 | 1, 2 | breq12d 4653 | . . 3 ⊢ (z = C → ((zFA)R(zFB) ↔ (CFA)R(CFB))) |
4 | 3 | bibi2d 309 | . 2 ⊢ (z = C → ((ARB ↔ (zFA)R(zFB)) ↔ (ARB ↔ (CFA)R(CFB)))) |
5 | caovord.1 | . . 3 ⊢ A ∈ V | |
6 | caovord.2 | . . 3 ⊢ B ∈ V | |
7 | breq1 4643 | . . . . . 6 ⊢ (x = A → (xRy ↔ ARy)) | |
8 | oveq2 5532 | . . . . . . 7 ⊢ (x = A → (zFx) = (zFA)) | |
9 | 8 | breq1d 4650 | . . . . . 6 ⊢ (x = A → ((zFx)R(zFy) ↔ (zFA)R(zFy))) |
10 | 7, 9 | bibi12d 312 | . . . . 5 ⊢ (x = A → ((xRy ↔ (zFx)R(zFy)) ↔ (ARy ↔ (zFA)R(zFy)))) |
11 | breq2 4644 | . . . . . 6 ⊢ (y = B → (ARy ↔ ARB)) | |
12 | oveq2 5532 | . . . . . . 7 ⊢ (y = B → (zFy) = (zFB)) | |
13 | 12 | breq2d 4652 | . . . . . 6 ⊢ (y = B → ((zFA)R(zFy) ↔ (zFA)R(zFB))) |
14 | 11, 13 | bibi12d 312 | . . . . 5 ⊢ (y = B → ((ARy ↔ (zFA)R(zFy)) ↔ (ARB ↔ (zFA)R(zFB)))) |
15 | 10, 14 | sylan9bb 680 | . . . 4 ⊢ ((x = A ∧ y = B) → ((xRy ↔ (zFx)R(zFy)) ↔ (ARB ↔ (zFA)R(zFB)))) |
16 | 15 | imbi2d 307 | . . 3 ⊢ ((x = A ∧ y = B) → ((z ∈ S → (xRy ↔ (zFx)R(zFy))) ↔ (z ∈ S → (ARB ↔ (zFA)R(zFB))))) |
17 | caovord.3 | . . 3 ⊢ (z ∈ S → (xRy ↔ (zFx)R(zFy))) | |
18 | 5, 6, 16, 17 | vtocl2 2911 | . 2 ⊢ (z ∈ S → (ARB ↔ (zFA)R(zFB))) |
19 | 4, 18 | vtoclga 2921 | 1 ⊢ (C ∈ S → (ARB ↔ (CFA)R(CFB))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 Vcvv 2860 class class class wbr 4640 (class class class)co 5526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-addc 4379 df-nnc 4380 df-phi 4566 df-op 4567 df-br 4641 df-fv 4796 df-ov 5527 |
This theorem is referenced by: caovord2 5631 caovord3 5632 |
Copyright terms: Public domain | W3C validator |