NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  elpw131c GIF version

Theorem elpw131c 4150
Description: Membership in 1111c. (Contributed by SF, 14-Jan-2015.)
Assertion
Ref Expression
elpw131c (A 1111cx A = {{{{x}}}})
Distinct variable group:   x,A

Proof of Theorem elpw131c
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 elpw1 4145 . 2 (A 1111cy 1 11cA = {y})
2 df-rex 2621 . . . 4 (y 1 11cA = {y} ↔ y(y 111c A = {y}))
3 elpw121c 4149 . . . . . . 7 (y 111cx y = {{{x}}})
43anbi1i 676 . . . . . 6 ((y 111c A = {y}) ↔ (x y = {{{x}}} A = {y}))
5 19.41v 1901 . . . . . 6 (x(y = {{{x}}} A = {y}) ↔ (x y = {{{x}}} A = {y}))
64, 5bitr4i 243 . . . . 5 ((y 111c A = {y}) ↔ x(y = {{{x}}} A = {y}))
76exbii 1582 . . . 4 (y(y 111c A = {y}) ↔ yx(y = {{{x}}} A = {y}))
82, 7bitri 240 . . 3 (y 1 11cA = {y} ↔ yx(y = {{{x}}} A = {y}))
9 excom 1741 . . . 4 (yx(y = {{{x}}} A = {y}) ↔ xy(y = {{{x}}} A = {y}))
10 snex 4112 . . . . . 6 {{{x}}} V
11 sneq 3745 . . . . . . 7 (y = {{{x}}} → {y} = {{{{x}}}})
1211eqeq2d 2364 . . . . . 6 (y = {{{x}}} → (A = {y} ↔ A = {{{{x}}}}))
1310, 12ceqsexv 2895 . . . . 5 (y(y = {{{x}}} A = {y}) ↔ A = {{{{x}}}})
1413exbii 1582 . . . 4 (xy(y = {{{x}}} A = {y}) ↔ x A = {{{{x}}}})
159, 14bitri 240 . . 3 (yx(y = {{{x}}} A = {y}) ↔ x A = {{{{x}}}})
168, 15bitri 240 . 2 (y 1 11cA = {y} ↔ x A = {{{{x}}}})
171, 16bitri 240 1 (A 1111cx A = {{{{x}}}})
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358  wex 1541   = wceq 1642   wcel 1710  wrex 2616  {csn 3738  1cc1c 4135  1cpw1 4136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-pw 3725  df-sn 3742  df-1c 4137  df-pw1 4138
This theorem is referenced by:  elpw141c  4151  nnsucelrlem1  4425  ltfinex  4465  eqpw1relk  4480  ncfinraiselem2  4481  ncfinlowerlem1  4483  eqtfinrelk  4487  oddfinex  4505  nnpweqlem1  4523  srelk  4525
  Copyright terms: Public domain W3C validator