New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elssetk | GIF version |
Description: Membership via the Kuratowski subset relationship. (Contributed by SF, 13-Jan-2015.) |
Ref | Expression |
---|---|
elssetk.1 | ⊢ A ∈ V |
elssetk.2 | ⊢ B ∈ V |
Ref | Expression |
---|---|
elssetk | ⊢ (⟪{A}, B⟫ ∈ Sk ↔ A ∈ B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elssetk.1 | . 2 ⊢ A ∈ V | |
2 | elssetk.2 | . 2 ⊢ B ∈ V | |
3 | elssetkg 4270 | . 2 ⊢ ((A ∈ V ∧ B ∈ V) → (⟪{A}, B⟫ ∈ Sk ↔ A ∈ B)) | |
4 | 1, 2, 3 | mp2an 653 | 1 ⊢ (⟪{A}, B⟫ ∈ Sk ↔ A ∈ B) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∈ wcel 1710 Vcvv 2860 {csn 3738 ⟪copk 4058 Sk cssetk 4184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-opk 4059 df-ssetk 4194 |
This theorem is referenced by: dfuni3 4316 dfint3 4319 ndisjrelk 4324 dfpw2 4328 dfaddc2 4382 dfnnc2 4396 nnsucelrlem1 4425 ltfinex 4465 ssfin 4471 eqpwrelk 4479 eqpw1relk 4480 ncfinraiselem2 4481 ncfinlowerlem1 4483 eqtfinrelk 4487 evenfinex 4504 oddfinex 4505 evenodddisjlem1 4516 nnadjoinlem1 4520 nnpweqlem1 4523 srelk 4525 tfinnnlem1 4534 spfinex 4538 dfop2lem1 4574 setconslem1 4732 setconslem2 4733 setconslem3 4734 setconslem7 4738 dfswap2 4742 |
Copyright terms: Public domain | W3C validator |