| Step | Hyp | Ref
 | Expression | 
| 1 |   | 3anass 938 | 
. . . . . . . 8
⊢ ((x = {a} ∧ y = {b} ∧ aRb) ↔ (x =
{a} ∧
(y = {b} ∧ aRb))) | 
| 2 | 1 | 2exbii 1583 | 
. . . . . . 7
⊢ (∃y∃b(x = {a} ∧ y = {b} ∧ aRb) ↔ ∃y∃b(x = {a} ∧ (y = {b} ∧ aRb))) | 
| 3 |   | 19.42vv 1907 | 
. . . . . . 7
⊢ (∃y∃b(x = {a} ∧ (y = {b} ∧ aRb)) ↔ (x =
{a} ∧
∃y∃b(y = {b} ∧ aRb))) | 
| 4 | 2, 3 | bitri 240 | 
. . . . . 6
⊢ (∃y∃b(x = {a} ∧ y = {b} ∧ aRb) ↔ (x =
{a} ∧
∃y∃b(y = {b} ∧ aRb))) | 
| 5 |   | snex 4112 | 
. . . . . . . . . . . 12
⊢ {b} ∈
V | 
| 6 | 5 | isseti 2866 | 
. . . . . . . . . . 11
⊢ ∃y y = {b} | 
| 7 |   | 19.41v 1901 | 
. . . . . . . . . . 11
⊢ (∃y(y = {b} ∧ aRb) ↔
(∃y
y = {b}
∧ aRb)) | 
| 8 | 6, 7 | mpbiran 884 | 
. . . . . . . . . 10
⊢ (∃y(y = {b} ∧ aRb) ↔
aRb) | 
| 9 | 8 | exbii 1582 | 
. . . . . . . . 9
⊢ (∃b∃y(y = {b} ∧ aRb) ↔ ∃b aRb) | 
| 10 |   | excom 1741 | 
. . . . . . . . 9
⊢ (∃y∃b(y = {b} ∧ aRb) ↔ ∃b∃y(y = {b} ∧ aRb)) | 
| 11 |   | eldm 4899 | 
. . . . . . . . 9
⊢ (a ∈ dom R ↔ ∃b aRb) | 
| 12 | 9, 10, 11 | 3bitr4i 268 | 
. . . . . . . 8
⊢ (∃y∃b(y = {b} ∧ aRb) ↔
a ∈ dom
R) | 
| 13 | 12 | anbi2i 675 | 
. . . . . . 7
⊢ ((x = {a} ∧ ∃y∃b(y = {b} ∧ aRb)) ↔ (x =
{a} ∧
a ∈ dom
R)) | 
| 14 |   | ancom 437 | 
. . . . . . 7
⊢ ((x = {a} ∧ a ∈ dom R) ↔
(a ∈ dom
R ∧
x = {a})) | 
| 15 | 13, 14 | bitri 240 | 
. . . . . 6
⊢ ((x = {a} ∧ ∃y∃b(y = {b} ∧ aRb)) ↔ (a
∈ dom R
∧ x =
{a})) | 
| 16 | 4, 15 | bitri 240 | 
. . . . 5
⊢ (∃y∃b(x = {a} ∧ y = {b} ∧ aRb) ↔ (a
∈ dom R
∧ x =
{a})) | 
| 17 | 16 | exbii 1582 | 
. . . 4
⊢ (∃a∃y∃b(x = {a} ∧ y = {b} ∧ aRb) ↔ ∃a(a ∈ dom R ∧ x = {a})) | 
| 18 |   | excom 1741 | 
. . . 4
⊢ (∃y∃a∃b(x = {a} ∧ y = {b} ∧ aRb) ↔ ∃a∃y∃b(x = {a} ∧ y = {b} ∧ aRb)) | 
| 19 |   | df-rex 2621 | 
. . . 4
⊢ (∃a ∈ dom R
x = {a}
↔ ∃a(a ∈ dom R ∧ x = {a})) | 
| 20 | 17, 18, 19 | 3bitr4i 268 | 
. . 3
⊢ (∃y∃a∃b(x = {a} ∧ y = {b} ∧ aRb) ↔ ∃a ∈ dom R
x = {a}) | 
| 21 |   | eldm 4899 | 
. . . 4
⊢ (x ∈ dom  SI R ↔ ∃y x SI Ry) | 
| 22 |   | brsi 4762 | 
. . . . 5
⊢ (x SI Ry ↔ ∃a∃b(x = {a} ∧ y = {b} ∧ aRb)) | 
| 23 | 22 | exbii 1582 | 
. . . 4
⊢ (∃y x SI Ry ↔ ∃y∃a∃b(x = {a} ∧ y = {b} ∧ aRb)) | 
| 24 | 21, 23 | bitri 240 | 
. . 3
⊢ (x ∈ dom  SI R ↔ ∃y∃a∃b(x = {a} ∧ y = {b} ∧ aRb)) | 
| 25 |   | elpw1 4145 | 
. . 3
⊢ (x ∈ ℘1dom R ↔ ∃a ∈ dom R
x = {a}) | 
| 26 | 20, 24, 25 | 3bitr4i 268 | 
. 2
⊢ (x ∈ dom  SI R ↔
x ∈ ℘1dom R) | 
| 27 | 26 | eqriv 2350 | 
1
⊢ dom  SI R = ℘1dom R |