Step | Hyp | Ref
| Expression |
1 | | 3anass 938 |
. . . . . . . 8
⊢ ((x = {a} ∧ y = {b} ∧ aRb) ↔ (x =
{a} ∧
(y = {b} ∧ aRb))) |
2 | 1 | 2exbii 1583 |
. . . . . . 7
⊢ (∃y∃b(x = {a} ∧ y = {b} ∧ aRb) ↔ ∃y∃b(x = {a} ∧ (y = {b} ∧ aRb))) |
3 | | 19.42vv 1907 |
. . . . . . 7
⊢ (∃y∃b(x = {a} ∧ (y = {b} ∧ aRb)) ↔ (x =
{a} ∧
∃y∃b(y = {b} ∧ aRb))) |
4 | 2, 3 | bitri 240 |
. . . . . 6
⊢ (∃y∃b(x = {a} ∧ y = {b} ∧ aRb) ↔ (x =
{a} ∧
∃y∃b(y = {b} ∧ aRb))) |
5 | | snex 4112 |
. . . . . . . . . . . 12
⊢ {b} ∈
V |
6 | 5 | isseti 2866 |
. . . . . . . . . . 11
⊢ ∃y y = {b} |
7 | | 19.41v 1901 |
. . . . . . . . . . 11
⊢ (∃y(y = {b} ∧ aRb) ↔
(∃y
y = {b}
∧ aRb)) |
8 | 6, 7 | mpbiran 884 |
. . . . . . . . . 10
⊢ (∃y(y = {b} ∧ aRb) ↔
aRb) |
9 | 8 | exbii 1582 |
. . . . . . . . 9
⊢ (∃b∃y(y = {b} ∧ aRb) ↔ ∃b aRb) |
10 | | excom 1741 |
. . . . . . . . 9
⊢ (∃y∃b(y = {b} ∧ aRb) ↔ ∃b∃y(y = {b} ∧ aRb)) |
11 | | eldm 4899 |
. . . . . . . . 9
⊢ (a ∈ dom R ↔ ∃b aRb) |
12 | 9, 10, 11 | 3bitr4i 268 |
. . . . . . . 8
⊢ (∃y∃b(y = {b} ∧ aRb) ↔
a ∈ dom
R) |
13 | 12 | anbi2i 675 |
. . . . . . 7
⊢ ((x = {a} ∧ ∃y∃b(y = {b} ∧ aRb)) ↔ (x =
{a} ∧
a ∈ dom
R)) |
14 | | ancom 437 |
. . . . . . 7
⊢ ((x = {a} ∧ a ∈ dom R) ↔
(a ∈ dom
R ∧
x = {a})) |
15 | 13, 14 | bitri 240 |
. . . . . 6
⊢ ((x = {a} ∧ ∃y∃b(y = {b} ∧ aRb)) ↔ (a
∈ dom R
∧ x =
{a})) |
16 | 4, 15 | bitri 240 |
. . . . 5
⊢ (∃y∃b(x = {a} ∧ y = {b} ∧ aRb) ↔ (a
∈ dom R
∧ x =
{a})) |
17 | 16 | exbii 1582 |
. . . 4
⊢ (∃a∃y∃b(x = {a} ∧ y = {b} ∧ aRb) ↔ ∃a(a ∈ dom R ∧ x = {a})) |
18 | | excom 1741 |
. . . 4
⊢ (∃y∃a∃b(x = {a} ∧ y = {b} ∧ aRb) ↔ ∃a∃y∃b(x = {a} ∧ y = {b} ∧ aRb)) |
19 | | df-rex 2621 |
. . . 4
⊢ (∃a ∈ dom R
x = {a}
↔ ∃a(a ∈ dom R ∧ x = {a})) |
20 | 17, 18, 19 | 3bitr4i 268 |
. . 3
⊢ (∃y∃a∃b(x = {a} ∧ y = {b} ∧ aRb) ↔ ∃a ∈ dom R
x = {a}) |
21 | | eldm 4899 |
. . . 4
⊢ (x ∈ dom SI R ↔ ∃y x SI Ry) |
22 | | brsi 4762 |
. . . . 5
⊢ (x SI Ry ↔ ∃a∃b(x = {a} ∧ y = {b} ∧ aRb)) |
23 | 22 | exbii 1582 |
. . . 4
⊢ (∃y x SI Ry ↔ ∃y∃a∃b(x = {a} ∧ y = {b} ∧ aRb)) |
24 | 21, 23 | bitri 240 |
. . 3
⊢ (x ∈ dom SI R ↔ ∃y∃a∃b(x = {a} ∧ y = {b} ∧ aRb)) |
25 | | elpw1 4145 |
. . 3
⊢ (x ∈ ℘1dom R ↔ ∃a ∈ dom R
x = {a}) |
26 | 20, 24, 25 | 3bitr4i 268 |
. 2
⊢ (x ∈ dom SI R ↔
x ∈ ℘1dom R) |
27 | 26 | eqriv 2350 |
1
⊢ dom SI R = ℘1dom R |