NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dmsi GIF version

Theorem dmsi 5520
Description: Calculate the domain of a singleton image. Theorem X.4.29.I of [Rosser] p. 301. (Contributed by SF, 26-Feb-2015.)
Assertion
Ref Expression
dmsi dom SI R = 1dom R

Proof of Theorem dmsi
Dummy variables a b x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3anass 938 . . . . . . . 8 ((x = {a} y = {b} aRb) ↔ (x = {a} (y = {b} aRb)))
212exbii 1583 . . . . . . 7 (yb(x = {a} y = {b} aRb) ↔ yb(x = {a} (y = {b} aRb)))
3 19.42vv 1907 . . . . . . 7 (yb(x = {a} (y = {b} aRb)) ↔ (x = {a} yb(y = {b} aRb)))
42, 3bitri 240 . . . . . 6 (yb(x = {a} y = {b} aRb) ↔ (x = {a} yb(y = {b} aRb)))
5 snex 4112 . . . . . . . . . . . 12 {b} V
65isseti 2866 . . . . . . . . . . 11 y y = {b}
7 19.41v 1901 . . . . . . . . . . 11 (y(y = {b} aRb) ↔ (y y = {b} aRb))
86, 7mpbiran 884 . . . . . . . . . 10 (y(y = {b} aRb) ↔ aRb)
98exbii 1582 . . . . . . . . 9 (by(y = {b} aRb) ↔ b aRb)
10 excom 1741 . . . . . . . . 9 (yb(y = {b} aRb) ↔ by(y = {b} aRb))
11 eldm 4899 . . . . . . . . 9 (a dom Rb aRb)
129, 10, 113bitr4i 268 . . . . . . . 8 (yb(y = {b} aRb) ↔ a dom R)
1312anbi2i 675 . . . . . . 7 ((x = {a} yb(y = {b} aRb)) ↔ (x = {a} a dom R))
14 ancom 437 . . . . . . 7 ((x = {a} a dom R) ↔ (a dom R x = {a}))
1513, 14bitri 240 . . . . . 6 ((x = {a} yb(y = {b} aRb)) ↔ (a dom R x = {a}))
164, 15bitri 240 . . . . 5 (yb(x = {a} y = {b} aRb) ↔ (a dom R x = {a}))
1716exbii 1582 . . . 4 (ayb(x = {a} y = {b} aRb) ↔ a(a dom R x = {a}))
18 excom 1741 . . . 4 (yab(x = {a} y = {b} aRb) ↔ ayb(x = {a} y = {b} aRb))
19 df-rex 2621 . . . 4 (a dom R x = {a} ↔ a(a dom R x = {a}))
2017, 18, 193bitr4i 268 . . 3 (yab(x = {a} y = {b} aRb) ↔ a dom R x = {a})
21 eldm 4899 . . . 4 (x dom SI Ry x SI Ry)
22 brsi 4762 . . . . 5 (x SI Ryab(x = {a} y = {b} aRb))
2322exbii 1582 . . . 4 (y x SI Ryyab(x = {a} y = {b} aRb))
2421, 23bitri 240 . . 3 (x dom SI Ryab(x = {a} y = {b} aRb))
25 elpw1 4145 . . 3 (x 1dom Ra dom R x = {a})
2620, 24, 253bitr4i 268 . 2 (x dom SI Rx 1dom R)
2726eqriv 2350 1 dom SI R = 1dom R
Colors of variables: wff setvar class
Syntax hints:   wa 358   w3a 934  wex 1541   = wceq 1642   wcel 1710  wrex 2616  {csn 3738  1cpw1 4136   class class class wbr 4640   SI csi 4721  dom cdm 4773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-ima 4728  df-si 4729  df-cnv 4786  df-rn 4787  df-dm 4788
This theorem is referenced by:  rnsi  5522  enpw1  6063
  Copyright terms: Public domain W3C validator