New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cbvoprab3 | GIF version |
Description: Rule used to change the third bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 22-Aug-2013.) |
Ref | Expression |
---|---|
cbvoprab3.1 | ⊢ Ⅎwφ |
cbvoprab3.2 | ⊢ Ⅎzψ |
cbvoprab3.3 | ⊢ (z = w → (φ ↔ ψ)) |
Ref | Expression |
---|---|
cbvoprab3 | ⊢ {〈〈x, y〉, z〉 ∣ φ} = {〈〈x, y〉, w〉 ∣ ψ} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . . . . . 6 ⊢ Ⅎw v = 〈x, y〉 | |
2 | cbvoprab3.1 | . . . . . 6 ⊢ Ⅎwφ | |
3 | 1, 2 | nfan 1824 | . . . . 5 ⊢ Ⅎw(v = 〈x, y〉 ∧ φ) |
4 | 3 | nfex 1843 | . . . 4 ⊢ Ⅎw∃y(v = 〈x, y〉 ∧ φ) |
5 | 4 | nfex 1843 | . . 3 ⊢ Ⅎw∃x∃y(v = 〈x, y〉 ∧ φ) |
6 | nfv 1619 | . . . . . 6 ⊢ Ⅎz v = 〈x, y〉 | |
7 | cbvoprab3.2 | . . . . . 6 ⊢ Ⅎzψ | |
8 | 6, 7 | nfan 1824 | . . . . 5 ⊢ Ⅎz(v = 〈x, y〉 ∧ ψ) |
9 | 8 | nfex 1843 | . . . 4 ⊢ Ⅎz∃y(v = 〈x, y〉 ∧ ψ) |
10 | 9 | nfex 1843 | . . 3 ⊢ Ⅎz∃x∃y(v = 〈x, y〉 ∧ ψ) |
11 | cbvoprab3.3 | . . . . 5 ⊢ (z = w → (φ ↔ ψ)) | |
12 | 11 | anbi2d 684 | . . . 4 ⊢ (z = w → ((v = 〈x, y〉 ∧ φ) ↔ (v = 〈x, y〉 ∧ ψ))) |
13 | 12 | 2exbidv 1628 | . . 3 ⊢ (z = w → (∃x∃y(v = 〈x, y〉 ∧ φ) ↔ ∃x∃y(v = 〈x, y〉 ∧ ψ))) |
14 | 5, 10, 13 | cbvopab2 4634 | . 2 ⊢ {〈v, z〉 ∣ ∃x∃y(v = 〈x, y〉 ∧ φ)} = {〈v, w〉 ∣ ∃x∃y(v = 〈x, y〉 ∧ ψ)} |
15 | dfoprab2 5559 | . 2 ⊢ {〈〈x, y〉, z〉 ∣ φ} = {〈v, z〉 ∣ ∃x∃y(v = 〈x, y〉 ∧ φ)} | |
16 | dfoprab2 5559 | . 2 ⊢ {〈〈x, y〉, w〉 ∣ ψ} = {〈v, w〉 ∣ ∃x∃y(v = 〈x, y〉 ∧ ψ)} | |
17 | 14, 15, 16 | 3eqtr4i 2383 | 1 ⊢ {〈〈x, y〉, z〉 ∣ φ} = {〈〈x, y〉, w〉 ∣ ψ} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∃wex 1541 Ⅎwnf 1544 = wceq 1642 〈cop 4562 {copab 4623 {coprab 5528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-addc 4379 df-nnc 4380 df-phi 4566 df-op 4567 df-opab 4624 df-oprab 5529 |
This theorem is referenced by: cbvoprab3v 5573 |
Copyright terms: Public domain | W3C validator |