![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > cbvoprab1 | GIF version |
Description: Rule used to change first bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 20-Dec-2008.) (Revised by Mario Carneiro, 5-Dec-2016.) |
Ref | Expression |
---|---|
cbvoprab1.1 | ⊢ Ⅎwφ |
cbvoprab1.2 | ⊢ Ⅎxψ |
cbvoprab1.3 | ⊢ (x = w → (φ ↔ ψ)) |
Ref | Expression |
---|---|
cbvoprab1 | ⊢ {〈〈x, y〉, z〉 ∣ φ} = {〈〈w, y〉, z〉 ∣ ψ} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . . . . . 6 ⊢ Ⅎw v = 〈x, y〉 | |
2 | cbvoprab1.1 | . . . . . 6 ⊢ Ⅎwφ | |
3 | 1, 2 | nfan 1824 | . . . . 5 ⊢ Ⅎw(v = 〈x, y〉 ∧ φ) |
4 | 3 | nfex 1843 | . . . 4 ⊢ Ⅎw∃y(v = 〈x, y〉 ∧ φ) |
5 | nfv 1619 | . . . . . 6 ⊢ Ⅎx v = 〈w, y〉 | |
6 | cbvoprab1.2 | . . . . . 6 ⊢ Ⅎxψ | |
7 | 5, 6 | nfan 1824 | . . . . 5 ⊢ Ⅎx(v = 〈w, y〉 ∧ ψ) |
8 | 7 | nfex 1843 | . . . 4 ⊢ Ⅎx∃y(v = 〈w, y〉 ∧ ψ) |
9 | opeq1 4578 | . . . . . . 7 ⊢ (x = w → 〈x, y〉 = 〈w, y〉) | |
10 | 9 | eqeq2d 2364 | . . . . . 6 ⊢ (x = w → (v = 〈x, y〉 ↔ v = 〈w, y〉)) |
11 | cbvoprab1.3 | . . . . . 6 ⊢ (x = w → (φ ↔ ψ)) | |
12 | 10, 11 | anbi12d 691 | . . . . 5 ⊢ (x = w → ((v = 〈x, y〉 ∧ φ) ↔ (v = 〈w, y〉 ∧ ψ))) |
13 | 12 | exbidv 1626 | . . . 4 ⊢ (x = w → (∃y(v = 〈x, y〉 ∧ φ) ↔ ∃y(v = 〈w, y〉 ∧ ψ))) |
14 | 4, 8, 13 | cbvex 1985 | . . 3 ⊢ (∃x∃y(v = 〈x, y〉 ∧ φ) ↔ ∃w∃y(v = 〈w, y〉 ∧ ψ)) |
15 | 14 | opabbii 4626 | . 2 ⊢ {〈v, z〉 ∣ ∃x∃y(v = 〈x, y〉 ∧ φ)} = {〈v, z〉 ∣ ∃w∃y(v = 〈w, y〉 ∧ ψ)} |
16 | dfoprab2 5558 | . 2 ⊢ {〈〈x, y〉, z〉 ∣ φ} = {〈v, z〉 ∣ ∃x∃y(v = 〈x, y〉 ∧ φ)} | |
17 | dfoprab2 5558 | . 2 ⊢ {〈〈w, y〉, z〉 ∣ ψ} = {〈v, z〉 ∣ ∃w∃y(v = 〈w, y〉 ∧ ψ)} | |
18 | 15, 16, 17 | 3eqtr4i 2383 | 1 ⊢ {〈〈x, y〉, z〉 ∣ φ} = {〈〈w, y〉, z〉 ∣ ψ} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∃wex 1541 Ⅎwnf 1544 = wceq 1642 〈cop 4561 {copab 4622 {coprab 5527 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-addc 4378 df-nnc 4379 df-phi 4565 df-op 4566 df-opab 4623 df-oprab 5528 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |