New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cbvoprab1 | GIF version |
Description: Rule used to change first bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 20-Dec-2008.) (Revised by Mario Carneiro, 5-Dec-2016.) |
Ref | Expression |
---|---|
cbvoprab1.1 | ⊢ Ⅎwφ |
cbvoprab1.2 | ⊢ Ⅎxψ |
cbvoprab1.3 | ⊢ (x = w → (φ ↔ ψ)) |
Ref | Expression |
---|---|
cbvoprab1 | ⊢ {〈〈x, y〉, z〉 ∣ φ} = {〈〈w, y〉, z〉 ∣ ψ} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . . . . . 6 ⊢ Ⅎw v = 〈x, y〉 | |
2 | cbvoprab1.1 | . . . . . 6 ⊢ Ⅎwφ | |
3 | 1, 2 | nfan 1824 | . . . . 5 ⊢ Ⅎw(v = 〈x, y〉 ∧ φ) |
4 | 3 | nfex 1843 | . . . 4 ⊢ Ⅎw∃y(v = 〈x, y〉 ∧ φ) |
5 | nfv 1619 | . . . . . 6 ⊢ Ⅎx v = 〈w, y〉 | |
6 | cbvoprab1.2 | . . . . . 6 ⊢ Ⅎxψ | |
7 | 5, 6 | nfan 1824 | . . . . 5 ⊢ Ⅎx(v = 〈w, y〉 ∧ ψ) |
8 | 7 | nfex 1843 | . . . 4 ⊢ Ⅎx∃y(v = 〈w, y〉 ∧ ψ) |
9 | opeq1 4579 | . . . . . . 7 ⊢ (x = w → 〈x, y〉 = 〈w, y〉) | |
10 | 9 | eqeq2d 2364 | . . . . . 6 ⊢ (x = w → (v = 〈x, y〉 ↔ v = 〈w, y〉)) |
11 | cbvoprab1.3 | . . . . . 6 ⊢ (x = w → (φ ↔ ψ)) | |
12 | 10, 11 | anbi12d 691 | . . . . 5 ⊢ (x = w → ((v = 〈x, y〉 ∧ φ) ↔ (v = 〈w, y〉 ∧ ψ))) |
13 | 12 | exbidv 1626 | . . . 4 ⊢ (x = w → (∃y(v = 〈x, y〉 ∧ φ) ↔ ∃y(v = 〈w, y〉 ∧ ψ))) |
14 | 4, 8, 13 | cbvex 1985 | . . 3 ⊢ (∃x∃y(v = 〈x, y〉 ∧ φ) ↔ ∃w∃y(v = 〈w, y〉 ∧ ψ)) |
15 | 14 | opabbii 4627 | . 2 ⊢ {〈v, z〉 ∣ ∃x∃y(v = 〈x, y〉 ∧ φ)} = {〈v, z〉 ∣ ∃w∃y(v = 〈w, y〉 ∧ ψ)} |
16 | dfoprab2 5559 | . 2 ⊢ {〈〈x, y〉, z〉 ∣ φ} = {〈v, z〉 ∣ ∃x∃y(v = 〈x, y〉 ∧ φ)} | |
17 | dfoprab2 5559 | . 2 ⊢ {〈〈w, y〉, z〉 ∣ ψ} = {〈v, z〉 ∣ ∃w∃y(v = 〈w, y〉 ∧ ψ)} | |
18 | 15, 16, 17 | 3eqtr4i 2383 | 1 ⊢ {〈〈x, y〉, z〉 ∣ φ} = {〈〈w, y〉, z〉 ∣ ψ} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∃wex 1541 Ⅎwnf 1544 = wceq 1642 〈cop 4562 {copab 4623 {coprab 5528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-addc 4379 df-nnc 4380 df-phi 4566 df-op 4567 df-opab 4624 df-oprab 5529 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |