NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  xpiundi GIF version

Theorem xpiundi 4818
Description: Distributive law for cross product over indexed union. (Contributed by set.mm contributors, 26-Apr-2014.) (Revised by Mario Carneiro, 27-Apr-2014.)
Assertion
Ref Expression
xpiundi (C × x A B) = x A (C × B)
Distinct variable group:   x,C
Allowed substitution hints:   A(x)   B(x)

Proof of Theorem xpiundi
Dummy variables y w z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom 2773 . . . 4 (w C x A y B z = w, yx A w C y B z = w, y)
2 eliun 3974 . . . . . . . 8 (y x A Bx A y B)
32anbi1i 676 . . . . . . 7 ((y x A B z = w, y) ↔ (x A y B z = w, y))
43exbii 1582 . . . . . 6 (y(y x A B z = w, y) ↔ y(x A y B z = w, y))
5 df-rex 2621 . . . . . 6 (y x A Bz = w, yy(y x A B z = w, y))
6 df-rex 2621 . . . . . . . 8 (y B z = w, yy(y B z = w, y))
76rexbii 2640 . . . . . . 7 (x A y B z = w, yx A y(y B z = w, y))
8 rexcom4 2879 . . . . . . 7 (x A y(y B z = w, y) ↔ yx A (y B z = w, y))
9 r19.41v 2765 . . . . . . . 8 (x A (y B z = w, y) ↔ (x A y B z = w, y))
109exbii 1582 . . . . . . 7 (yx A (y B z = w, y) ↔ y(x A y B z = w, y))
117, 8, 103bitri 262 . . . . . 6 (x A y B z = w, yy(x A y B z = w, y))
124, 5, 113bitr4i 268 . . . . 5 (y x A Bz = w, yx A y B z = w, y)
1312rexbii 2640 . . . 4 (w C y x A Bz = w, yw C x A y B z = w, y)
14 elxp2 4803 . . . . 5 (z (C × B) ↔ w C y B z = w, y)
1514rexbii 2640 . . . 4 (x A z (C × B) ↔ x A w C y B z = w, y)
161, 13, 153bitr4i 268 . . 3 (w C y x A Bz = w, yx A z (C × B))
17 elxp2 4803 . . 3 (z (C × x A B) ↔ w C y x A Bz = w, y)
18 eliun 3974 . . 3 (z x A (C × B) ↔ x A z (C × B))
1916, 17, 183bitr4i 268 . 2 (z (C × x A B) ↔ z x A (C × B))
2019eqriv 2350 1 (C × x A B) = x A (C × B)
Colors of variables: wff setvar class
Syntax hints:   wa 358  wex 1541   = wceq 1642   wcel 1710  wrex 2616  ciun 3970  cop 4562   × cxp 4771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-iun 3972  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-addc 4379  df-nnc 4380  df-phi 4566  df-op 4567  df-opab 4624  df-xp 4785
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator