ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemnm Unicode version

Theorem resqrexlemnm 10089
Description: Lemma for resqrex 10097. The difference between two terms of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 31-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) ,  RR+ )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
resqrexlemnmsq.n  |-  ( ph  ->  N  e.  NN )
resqrexlemnmsq.m  |-  ( ph  ->  M  e.  NN )
resqrexlemnmsq.nm  |-  ( ph  ->  N  <_  M )
Assertion
Ref Expression
resqrexlemnm  |-  ( ph  ->  ( ( F `  N )  -  ( F `  M )
)  <  ( (
( ( F ` 
1 ) ^ 2 )  x.  2 )  /  ( 2 ^ ( N  -  1 ) ) ) )
Distinct variable groups:    y, A, z    ph, y, z    y, M, z    y, N, z
Allowed substitution hints:    F( y, z)

Proof of Theorem resqrexlemnm
StepHypRef Expression
1 resqrexlemex.seq . . . . . . 7  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) ,  RR+ )
2 resqrexlemex.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
3 resqrexlemex.agt0 . . . . . . 7  |-  ( ph  ->  0  <_  A )
41, 2, 3resqrexlemf 10078 . . . . . 6  |-  ( ph  ->  F : NN --> RR+ )
5 resqrexlemnmsq.n . . . . . 6  |-  ( ph  ->  N  e.  NN )
64, 5ffvelrnd 5356 . . . . 5  |-  ( ph  ->  ( F `  N
)  e.  RR+ )
76rpred 8890 . . . 4  |-  ( ph  ->  ( F `  N
)  e.  RR )
8 resqrexlemnmsq.m . . . . . 6  |-  ( ph  ->  M  e.  NN )
94, 8ffvelrnd 5356 . . . . 5  |-  ( ph  ->  ( F `  M
)  e.  RR+ )
109rpred 8890 . . . 4  |-  ( ph  ->  ( F `  M
)  e.  RR )
117, 10resubcld 7588 . . 3  |-  ( ph  ->  ( ( F `  N )  -  ( F `  M )
)  e.  RR )
127resqcld 9764 . . . . 5  |-  ( ph  ->  ( ( F `  N ) ^ 2 )  e.  RR )
1310resqcld 9764 . . . . 5  |-  ( ph  ->  ( ( F `  M ) ^ 2 )  e.  RR )
1412, 13resubcld 7588 . . . 4  |-  ( ph  ->  ( ( ( F `
 N ) ^
2 )  -  (
( F `  M
) ^ 2 ) )  e.  RR )
15 2cn 8213 . . . . . . 7  |-  2  e.  CC
16 expm1t 9637 . . . . . . 7  |-  ( ( 2  e.  CC  /\  N  e.  NN )  ->  ( 2 ^ N
)  =  ( ( 2 ^ ( N  -  1 ) )  x.  2 ) )
1715, 5, 16sylancr 405 . . . . . 6  |-  ( ph  ->  ( 2 ^ N
)  =  ( ( 2 ^ ( N  -  1 ) )  x.  2 ) )
18 2nn 8296 . . . . . . . . 9  |-  2  e.  NN
1918a1i 9 . . . . . . . 8  |-  ( ph  ->  2  e.  NN )
205nnnn0d 8444 . . . . . . . 8  |-  ( ph  ->  N  e.  NN0 )
2119, 20nnexpcld 9760 . . . . . . 7  |-  ( ph  ->  ( 2 ^ N
)  e.  NN )
2221nnrpd 8889 . . . . . 6  |-  ( ph  ->  ( 2 ^ N
)  e.  RR+ )
2317, 22eqeltrrd 2160 . . . . 5  |-  ( ph  ->  ( ( 2 ^ ( N  -  1 ) )  x.  2 )  e.  RR+ )
2423rpred 8890 . . . 4  |-  ( ph  ->  ( ( 2 ^ ( N  -  1 ) )  x.  2 )  e.  RR )
2514, 24remulcld 7247 . . 3  |-  ( ph  ->  ( ( ( ( F `  N ) ^ 2 )  -  ( ( F `  M ) ^ 2 ) )  x.  (
( 2 ^ ( N  -  1 ) )  x.  2 ) )  e.  RR )
26 1nn 8153 . . . . . . . . 9  |-  1  e.  NN
2726a1i 9 . . . . . . . 8  |-  ( ph  ->  1  e.  NN )
284, 27ffvelrnd 5356 . . . . . . 7  |-  ( ph  ->  ( F `  1
)  e.  RR+ )
2919nnzd 8585 . . . . . . 7  |-  ( ph  ->  2  e.  ZZ )
3028, 29rpexpcld 9762 . . . . . 6  |-  ( ph  ->  ( ( F ` 
1 ) ^ 2 )  e.  RR+ )
31 4re 8219 . . . . . . . . 9  |-  4  e.  RR
32 4pos 8239 . . . . . . . . 9  |-  0  <  4
3331, 32elrpii 8854 . . . . . . . 8  |-  4  e.  RR+
3433a1i 9 . . . . . . 7  |-  ( ph  ->  4  e.  RR+ )
355nnzd 8585 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
36 peano2zm 8506 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
3735, 36syl 14 . . . . . . 7  |-  ( ph  ->  ( N  -  1 )  e.  ZZ )
3834, 37rpexpcld 9762 . . . . . 6  |-  ( ph  ->  ( 4 ^ ( N  -  1 ) )  e.  RR+ )
3930, 38rpdivcld 8908 . . . . 5  |-  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( N  -  1 ) ) )  e.  RR+ )
4039rpred 8890 . . . 4  |-  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( N  -  1 ) ) )  e.  RR )
4140, 24remulcld 7247 . . 3  |-  ( ph  ->  ( ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ ( N  -  1 ) ) )  x.  (
( 2 ^ ( N  -  1 ) )  x.  2 ) )  e.  RR )
426, 9rpaddcld 8906 . . . . . . 7  |-  ( ph  ->  ( ( F `  N )  +  ( F `  M ) )  e.  RR+ )
4342, 23rpmulcld 8907 . . . . . 6  |-  ( ph  ->  ( ( ( F `
 N )  +  ( F `  M
) )  x.  (
( 2 ^ ( N  -  1 ) )  x.  2 ) )  e.  RR+ )
4443rpred 8890 . . . . 5  |-  ( ph  ->  ( ( ( F `
 N )  +  ( F `  M
) )  x.  (
( 2 ^ ( N  -  1 ) )  x.  2 ) )  e.  RR )
452adantr 270 . . . . . . . . 9  |-  ( (
ph  /\  N  <  M )  ->  A  e.  RR )
463adantr 270 . . . . . . . . 9  |-  ( (
ph  /\  N  <  M )  ->  0  <_  A )
475adantr 270 . . . . . . . . 9  |-  ( (
ph  /\  N  <  M )  ->  N  e.  NN )
488adantr 270 . . . . . . . . 9  |-  ( (
ph  /\  N  <  M )  ->  M  e.  NN )
49 simpr 108 . . . . . . . . 9  |-  ( (
ph  /\  N  <  M )  ->  N  <  M )
501, 45, 46, 47, 48, 49resqrexlemdecn 10083 . . . . . . . 8  |-  ( (
ph  /\  N  <  M )  ->  ( F `  M )  <  ( F `  N )
)
5110adantr 270 . . . . . . . . 9  |-  ( (
ph  /\  N  <  M )  ->  ( F `  M )  e.  RR )
527adantr 270 . . . . . . . . 9  |-  ( (
ph  /\  N  <  M )  ->  ( F `  N )  e.  RR )
53 difrp 8887 . . . . . . . . 9  |-  ( ( ( F `  M
)  e.  RR  /\  ( F `  N )  e.  RR )  -> 
( ( F `  M )  <  ( F `  N )  <->  ( ( F `  N
)  -  ( F `
 M ) )  e.  RR+ ) )
5451, 52, 53syl2anc 403 . . . . . . . 8  |-  ( (
ph  /\  N  <  M )  ->  ( ( F `  M )  <  ( F `  N
)  <->  ( ( F `
 N )  -  ( F `  M ) )  e.  RR+ )
)
5550, 54mpbid 145 . . . . . . 7  |-  ( (
ph  /\  N  <  M )  ->  ( ( F `  N )  -  ( F `  M ) )  e.  RR+ )
5655rpge0d 8894 . . . . . 6  |-  ( (
ph  /\  N  <  M )  ->  0  <_  ( ( F `  N
)  -  ( F `
 M ) ) )
577recnd 7245 . . . . . . . . 9  |-  ( ph  ->  ( F `  N
)  e.  CC )
5857subidd 7510 . . . . . . . 8  |-  ( ph  ->  ( ( F `  N )  -  ( F `  N )
)  =  0 )
59 fveq2 5230 . . . . . . . . 9  |-  ( N  =  M  ->  ( F `  N )  =  ( F `  M ) )
6059oveq2d 5580 . . . . . . . 8  |-  ( N  =  M  ->  (
( F `  N
)  -  ( F `
 N ) )  =  ( ( F `
 N )  -  ( F `  M ) ) )
6158, 60sylan9req 2136 . . . . . . 7  |-  ( (
ph  /\  N  =  M )  ->  0  =  ( ( F `
 N )  -  ( F `  M ) ) )
62 0re 7217 . . . . . . . 8  |-  0  e.  RR
6362eqlei 7307 . . . . . . 7  |-  ( 0  =  ( ( F `
 N )  -  ( F `  M ) )  ->  0  <_  ( ( F `  N
)  -  ( F `
 M ) ) )
6461, 63syl 14 . . . . . 6  |-  ( (
ph  /\  N  =  M )  ->  0  <_  ( ( F `  N )  -  ( F `  M )
) )
65 resqrexlemnmsq.nm . . . . . . 7  |-  ( ph  ->  N  <_  M )
668nnzd 8585 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
67 zleloe 8515 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  <_  M  <->  ( N  <  M  \/  N  =  M )
) )
6835, 66, 67syl2anc 403 . . . . . . 7  |-  ( ph  ->  ( N  <_  M  <->  ( N  <  M  \/  N  =  M )
) )
6965, 68mpbid 145 . . . . . 6  |-  ( ph  ->  ( N  <  M  \/  N  =  M
) )
7056, 64, 69mpjaodan 745 . . . . 5  |-  ( ph  ->  0  <_  ( ( F `  N )  -  ( F `  M ) ) )
71 1red 7232 . . . . . 6  |-  ( ph  ->  1  e.  RR )
7221nnrecred 8188 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  /  (
2 ^ N ) )  e.  RR )
7372recnd 7245 . . . . . . . . . 10  |-  ( ph  ->  ( 1  /  (
2 ^ N ) )  e.  CC )
7473addid1d 7360 . . . . . . . . 9  |-  ( ph  ->  ( ( 1  / 
( 2 ^ N
) )  +  0 )  =  ( 1  /  ( 2 ^ N ) ) )
75 0red 7218 . . . . . . . . . 10  |-  ( ph  ->  0  e.  RR )
761, 2, 3resqrexlemlo 10084 . . . . . . . . . . 11  |-  ( (
ph  /\  N  e.  NN )  ->  ( 1  /  ( 2 ^ N ) )  < 
( F `  N
) )
775, 76mpdan 412 . . . . . . . . . 10  |-  ( ph  ->  ( 1  /  (
2 ^ N ) )  <  ( F `
 N ) )
789rpgt0d 8893 . . . . . . . . . 10  |-  ( ph  ->  0  <  ( F `
 M ) )
7972, 75, 7, 10, 77, 78lt2addd 7770 . . . . . . . . 9  |-  ( ph  ->  ( ( 1  / 
( 2 ^ N
) )  +  0 )  <  ( ( F `  N )  +  ( F `  M ) ) )
8074, 79eqbrtrrd 3828 . . . . . . . 8  |-  ( ph  ->  ( 1  /  (
2 ^ N ) )  <  ( ( F `  N )  +  ( F `  M ) ) )
817, 10readdcld 7246 . . . . . . . . 9  |-  ( ph  ->  ( ( F `  N )  +  ( F `  M ) )  e.  RR )
8271, 81, 22ltdivmul2d 8943 . . . . . . . 8  |-  ( ph  ->  ( ( 1  / 
( 2 ^ N
) )  <  (
( F `  N
)  +  ( F `
 M ) )  <->  1  <  ( ( ( F `  N
)  +  ( F `
 M ) )  x.  ( 2 ^ N ) ) ) )
8380, 82mpbid 145 . . . . . . 7  |-  ( ph  ->  1  <  ( ( ( F `  N
)  +  ( F `
 M ) )  x.  ( 2 ^ N ) ) )
8417oveq2d 5580 . . . . . . 7  |-  ( ph  ->  ( ( ( F `
 N )  +  ( F `  M
) )  x.  (
2 ^ N ) )  =  ( ( ( F `  N
)  +  ( F `
 M ) )  x.  ( ( 2 ^ ( N  - 
1 ) )  x.  2 ) ) )
8583, 84breqtrd 3830 . . . . . 6  |-  ( ph  ->  1  <  ( ( ( F `  N
)  +  ( F `
 M ) )  x.  ( ( 2 ^ ( N  - 
1 ) )  x.  2 ) ) )
8671, 44, 85ltled 7331 . . . . 5  |-  ( ph  ->  1  <_  ( (
( F `  N
)  +  ( F `
 M ) )  x.  ( ( 2 ^ ( N  - 
1 ) )  x.  2 ) ) )
8711, 44, 70, 86lemulge11d 8118 . . . 4  |-  ( ph  ->  ( ( F `  N )  -  ( F `  M )
)  <_  ( (
( F `  N
)  -  ( F `
 M ) )  x.  ( ( ( F `  N )  +  ( F `  M ) )  x.  ( ( 2 ^ ( N  -  1 ) )  x.  2 ) ) ) )
8811recnd 7245 . . . . . 6  |-  ( ph  ->  ( ( F `  N )  -  ( F `  M )
)  e.  CC )
8981recnd 7245 . . . . . 6  |-  ( ph  ->  ( ( F `  N )  +  ( F `  M ) )  e.  CC )
9023rpcnd 8892 . . . . . 6  |-  ( ph  ->  ( ( 2 ^ ( N  -  1 ) )  x.  2 )  e.  CC )
9188, 89, 90mulassd 7240 . . . . 5  |-  ( ph  ->  ( ( ( ( F `  N )  -  ( F `  M ) )  x.  ( ( F `  N )  +  ( F `  M ) ) )  x.  (
( 2 ^ ( N  -  1 ) )  x.  2 ) )  =  ( ( ( F `  N
)  -  ( F `
 M ) )  x.  ( ( ( F `  N )  +  ( F `  M ) )  x.  ( ( 2 ^ ( N  -  1 ) )  x.  2 ) ) ) )
9288, 89mulcomd 7238 . . . . . . 7  |-  ( ph  ->  ( ( ( F `
 N )  -  ( F `  M ) )  x.  ( ( F `  N )  +  ( F `  M ) ) )  =  ( ( ( F `  N )  +  ( F `  M ) )  x.  ( ( F `  N )  -  ( F `  M )
) ) )
9310recnd 7245 . . . . . . . 8  |-  ( ph  ->  ( F `  M
)  e.  CC )
94 subsq 9714 . . . . . . . 8  |-  ( ( ( F `  N
)  e.  CC  /\  ( F `  M )  e.  CC )  -> 
( ( ( F `
 N ) ^
2 )  -  (
( F `  M
) ^ 2 ) )  =  ( ( ( F `  N
)  +  ( F `
 M ) )  x.  ( ( F `
 N )  -  ( F `  M ) ) ) )
9557, 93, 94syl2anc 403 . . . . . . 7  |-  ( ph  ->  ( ( ( F `
 N ) ^
2 )  -  (
( F `  M
) ^ 2 ) )  =  ( ( ( F `  N
)  +  ( F `
 M ) )  x.  ( ( F `
 N )  -  ( F `  M ) ) ) )
9692, 95eqtr4d 2118 . . . . . 6  |-  ( ph  ->  ( ( ( F `
 N )  -  ( F `  M ) )  x.  ( ( F `  N )  +  ( F `  M ) ) )  =  ( ( ( F `  N ) ^ 2 )  -  ( ( F `  M ) ^ 2 ) ) )
9796oveq1d 5579 . . . . 5  |-  ( ph  ->  ( ( ( ( F `  N )  -  ( F `  M ) )  x.  ( ( F `  N )  +  ( F `  M ) ) )  x.  (
( 2 ^ ( N  -  1 ) )  x.  2 ) )  =  ( ( ( ( F `  N ) ^ 2 )  -  ( ( F `  M ) ^ 2 ) )  x.  ( ( 2 ^ ( N  - 
1 ) )  x.  2 ) ) )
9891, 97eqtr3d 2117 . . . 4  |-  ( ph  ->  ( ( ( F `
 N )  -  ( F `  M ) )  x.  ( ( ( F `  N
)  +  ( F `
 M ) )  x.  ( ( 2 ^ ( N  - 
1 ) )  x.  2 ) ) )  =  ( ( ( ( F `  N
) ^ 2 )  -  ( ( F `
 M ) ^
2 ) )  x.  ( ( 2 ^ ( N  -  1 ) )  x.  2 ) ) )
9987, 98breqtrd 3830 . . 3  |-  ( ph  ->  ( ( F `  N )  -  ( F `  M )
)  <_  ( (
( ( F `  N ) ^ 2 )  -  ( ( F `  M ) ^ 2 ) )  x.  ( ( 2 ^ ( N  - 
1 ) )  x.  2 ) ) )
1001, 2, 3, 5, 8, 65resqrexlemnmsq 10088 . . . 4  |-  ( ph  ->  ( ( ( F `
 N ) ^
2 )  -  (
( F `  M
) ^ 2 ) )  <  ( ( ( F `  1
) ^ 2 )  /  ( 4 ^ ( N  -  1 ) ) ) )
10114, 40, 23, 100ltmul1dd 8946 . . 3  |-  ( ph  ->  ( ( ( ( F `  N ) ^ 2 )  -  ( ( F `  M ) ^ 2 ) )  x.  (
( 2 ^ ( N  -  1 ) )  x.  2 ) )  <  ( ( ( ( F ` 
1 ) ^ 2 )  /  ( 4 ^ ( N  - 
1 ) ) )  x.  ( ( 2 ^ ( N  - 
1 ) )  x.  2 ) ) )
10211, 25, 41, 99, 101lelttrd 7337 . 2  |-  ( ph  ->  ( ( F `  N )  -  ( F `  M )
)  <  ( (
( ( F ` 
1 ) ^ 2 )  /  ( 4 ^ ( N  - 
1 ) ) )  x.  ( ( 2 ^ ( N  - 
1 ) )  x.  2 ) ) )
10340recnd 7245 . . . . . 6  |-  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  /  (
4 ^ ( N  -  1 ) ) )  e.  CC )
10419nnrpd 8889 . . . . . . . 8  |-  ( ph  ->  2  e.  RR+ )
105104, 37rpexpcld 9762 . . . . . . 7  |-  ( ph  ->  ( 2 ^ ( N  -  1 ) )  e.  RR+ )
106105rpcnd 8892 . . . . . 6  |-  ( ph  ->  ( 2 ^ ( N  -  1 ) )  e.  CC )
107 2cnd 8215 . . . . . 6  |-  ( ph  ->  2  e.  CC )
108103, 106, 107mulassd 7240 . . . . 5  |-  ( ph  ->  ( ( ( ( ( F `  1
) ^ 2 )  /  ( 4 ^ ( N  -  1 ) ) )  x.  ( 2 ^ ( N  -  1 ) ) )  x.  2 )  =  ( ( ( ( F ` 
1 ) ^ 2 )  /  ( 4 ^ ( N  - 
1 ) ) )  x.  ( ( 2 ^ ( N  - 
1 ) )  x.  2 ) ) )
10930rpcnd 8892 . . . . . . . 8  |-  ( ph  ->  ( ( F ` 
1 ) ^ 2 )  e.  CC )
11038rpcnd 8892 . . . . . . . 8  |-  ( ph  ->  ( 4 ^ ( N  -  1 ) )  e.  CC )
11138rpap0d 8896 . . . . . . . 8  |-  ( ph  ->  ( 4 ^ ( N  -  1 ) ) #  0 )
112109, 110, 106, 111div32apd 8003 . . . . . . 7  |-  ( ph  ->  ( ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ ( N  -  1 ) ) )  x.  (
2 ^ ( N  -  1 ) ) )  =  ( ( ( F `  1
) ^ 2 )  x.  ( ( 2 ^ ( N  - 
1 ) )  / 
( 4 ^ ( N  -  1 ) ) ) ) )
113 4d2e2 8295 . . . . . . . . . . . 12  |-  ( 4  /  2 )  =  2
114113oveq1i 5574 . . . . . . . . . . 11  |-  ( ( 4  /  2 ) ^ ( N  - 
1 ) )  =  ( 2 ^ ( N  -  1 ) )
11534rpcnd 8892 . . . . . . . . . . . 12  |-  ( ph  ->  4  e.  CC )
116104rpap0d 8896 . . . . . . . . . . . 12  |-  ( ph  ->  2 #  0 )
117 nnm1nn0 8432 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
1185, 117syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  ( N  -  1 )  e.  NN0 )
119115, 107, 116, 118expdivapd 9752 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 4  / 
2 ) ^ ( N  -  1 ) )  =  ( ( 4 ^ ( N  -  1 ) )  /  ( 2 ^ ( N  -  1 ) ) ) )
120114, 119syl5eqr 2129 . . . . . . . . . 10  |-  ( ph  ->  ( 2 ^ ( N  -  1 ) )  =  ( ( 4 ^ ( N  -  1 ) )  /  ( 2 ^ ( N  -  1 ) ) ) )
121120oveq2d 5580 . . . . . . . . 9  |-  ( ph  ->  ( 1  /  (
2 ^ ( N  -  1 ) ) )  =  ( 1  /  ( ( 4 ^ ( N  - 
1 ) )  / 
( 2 ^ ( N  -  1 ) ) ) ) )
122105rpap0d 8896 . . . . . . . . . 10  |-  ( ph  ->  ( 2 ^ ( N  -  1 ) ) #  0 )
123110, 106, 111, 122recdivapd 7997 . . . . . . . . 9  |-  ( ph  ->  ( 1  /  (
( 4 ^ ( N  -  1 ) )  /  ( 2 ^ ( N  - 
1 ) ) ) )  =  ( ( 2 ^ ( N  -  1 ) )  /  ( 4 ^ ( N  -  1 ) ) ) )
124121, 123eqtrd 2115 . . . . . . . 8  |-  ( ph  ->  ( 1  /  (
2 ^ ( N  -  1 ) ) )  =  ( ( 2 ^ ( N  -  1 ) )  /  ( 4 ^ ( N  -  1 ) ) ) )
125124oveq2d 5580 . . . . . . 7  |-  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  x.  (
1  /  ( 2 ^ ( N  - 
1 ) ) ) )  =  ( ( ( F `  1
) ^ 2 )  x.  ( ( 2 ^ ( N  - 
1 ) )  / 
( 4 ^ ( N  -  1 ) ) ) ) )
126112, 125eqtr4d 2118 . . . . . 6  |-  ( ph  ->  ( ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ ( N  -  1 ) ) )  x.  (
2 ^ ( N  -  1 ) ) )  =  ( ( ( F `  1
) ^ 2 )  x.  ( 1  / 
( 2 ^ ( N  -  1 ) ) ) ) )
127126oveq1d 5579 . . . . 5  |-  ( ph  ->  ( ( ( ( ( F `  1
) ^ 2 )  /  ( 4 ^ ( N  -  1 ) ) )  x.  ( 2 ^ ( N  -  1 ) ) )  x.  2 )  =  ( ( ( ( F ` 
1 ) ^ 2 )  x.  ( 1  /  ( 2 ^ ( N  -  1 ) ) ) )  x.  2 ) )
128108, 127eqtr3d 2117 . . . 4  |-  ( ph  ->  ( ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ ( N  -  1 ) ) )  x.  (
( 2 ^ ( N  -  1 ) )  x.  2 ) )  =  ( ( ( ( F ` 
1 ) ^ 2 )  x.  ( 1  /  ( 2 ^ ( N  -  1 ) ) ) )  x.  2 ) )
129106, 122recclapd 7972 . . . . 5  |-  ( ph  ->  ( 1  /  (
2 ^ ( N  -  1 ) ) )  e.  CC )
130109, 129, 107mul32d 7364 . . . 4  |-  ( ph  ->  ( ( ( ( F `  1 ) ^ 2 )  x.  ( 1  /  (
2 ^ ( N  -  1 ) ) ) )  x.  2 )  =  ( ( ( ( F ` 
1 ) ^ 2 )  x.  2 )  x.  ( 1  / 
( 2 ^ ( N  -  1 ) ) ) ) )
131128, 130eqtrd 2115 . . 3  |-  ( ph  ->  ( ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ ( N  -  1 ) ) )  x.  (
( 2 ^ ( N  -  1 ) )  x.  2 ) )  =  ( ( ( ( F ` 
1 ) ^ 2 )  x.  2 )  x.  ( 1  / 
( 2 ^ ( N  -  1 ) ) ) ) )
132109, 107mulcld 7237 . . . 4  |-  ( ph  ->  ( ( ( F `
 1 ) ^
2 )  x.  2 )  e.  CC )
133132, 106, 122divrecapd 7983 . . 3  |-  ( ph  ->  ( ( ( ( F `  1 ) ^ 2 )  x.  2 )  /  (
2 ^ ( N  -  1 ) ) )  =  ( ( ( ( F ` 
1 ) ^ 2 )  x.  2 )  x.  ( 1  / 
( 2 ^ ( N  -  1 ) ) ) ) )
134131, 133eqtr4d 2118 . 2  |-  ( ph  ->  ( ( ( ( F `  1 ) ^ 2 )  / 
( 4 ^ ( N  -  1 ) ) )  x.  (
( 2 ^ ( N  -  1 ) )  x.  2 ) )  =  ( ( ( ( F ` 
1 ) ^ 2 )  x.  2 )  /  ( 2 ^ ( N  -  1 ) ) ) )
135102, 134breqtrd 3830 1  |-  ( ph  ->  ( ( F `  N )  -  ( F `  M )
)  <  ( (
( ( F ` 
1 ) ^ 2 )  x.  2 )  /  ( 2 ^ ( N  -  1 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 662    = wceq 1285    e. wcel 1434   {csn 3417   class class class wbr 3806    X. cxp 4390   ` cfv 4953  (class class class)co 5564    |-> cmpt2 5566   CCcc 7077   RRcr 7078   0cc0 7079   1c1 7080    + caddc 7082    x. cmul 7084    < clt 7251    <_ cle 7252    - cmin 7382    / cdiv 7863   NNcn 8142   2c2 8192   4c4 8194   NN0cn0 8391   ZZcz 8468   RR+crp 8851    seqcseq 9557   ^cexp 9608
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3914  ax-sep 3917  ax-nul 3925  ax-pow 3969  ax-pr 3993  ax-un 4217  ax-setind 4309  ax-iinf 4358  ax-cnex 7165  ax-resscn 7166  ax-1cn 7167  ax-1re 7168  ax-icn 7169  ax-addcl 7170  ax-addrcl 7171  ax-mulcl 7172  ax-mulrcl 7173  ax-addcom 7174  ax-mulcom 7175  ax-addass 7176  ax-mulass 7177  ax-distr 7178  ax-i2m1 7179  ax-0lt1 7180  ax-1rid 7181  ax-0id 7182  ax-rnegex 7183  ax-precex 7184  ax-cnre 7185  ax-pre-ltirr 7186  ax-pre-ltwlin 7187  ax-pre-lttrn 7188  ax-pre-apti 7189  ax-pre-ltadd 7190  ax-pre-mulgt0 7191  ax-pre-mulext 7192
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2612  df-sbc 2826  df-csb 2919  df-dif 2985  df-un 2987  df-in 2989  df-ss 2996  df-nul 3269  df-if 3370  df-pw 3403  df-sn 3423  df-pr 3424  df-op 3426  df-uni 3623  df-int 3658  df-iun 3701  df-br 3807  df-opab 3861  df-mpt 3862  df-tr 3897  df-id 4077  df-po 4080  df-iso 4081  df-iord 4150  df-on 4152  df-ilim 4153  df-suc 4155  df-iom 4361  df-xp 4398  df-rel 4399  df-cnv 4400  df-co 4401  df-dm 4402  df-rn 4403  df-res 4404  df-ima 4405  df-iota 4918  df-fun 4955  df-fn 4956  df-f 4957  df-f1 4958  df-fo 4959  df-f1o 4960  df-fv 4961  df-riota 5520  df-ov 5567  df-oprab 5568  df-mpt2 5569  df-1st 5819  df-2nd 5820  df-recs 5975  df-frec 6061  df-pnf 7253  df-mnf 7254  df-xr 7255  df-ltxr 7256  df-le 7257  df-sub 7384  df-neg 7385  df-reap 7778  df-ap 7785  df-div 7864  df-inn 8143  df-2 8201  df-3 8202  df-4 8203  df-n0 8392  df-z 8469  df-uz 8737  df-rp 8852  df-iseq 9558  df-iexp 9609
This theorem is referenced by:  resqrexlemcvg  10090
  Copyright terms: Public domain W3C validator