ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemm GIF version

Theorem caucvgprlemm 6823
Description: Lemma for caucvgpr 6837. The putative limit is inhabited. (Contributed by Jim Kingdon, 27-Sep-2020.)
Hypotheses
Ref Expression
caucvgpr.f (𝜑𝐹:NQ)
caucvgpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))
caucvgpr.bnd (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
caucvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩
Assertion
Ref Expression
caucvgprlemm (𝜑 → (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐿)))
Distinct variable groups:   𝐴,𝑗,𝑠   𝑗,𝐹,𝑙   𝐹,𝑟   𝑢,𝐹,𝑗   𝐿,𝑟   𝜑,𝑗,𝑠   𝑠,𝑙
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑛,𝑟,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑟,𝑙)   𝐹(𝑘,𝑛,𝑠)   𝐿(𝑢,𝑗,𝑘,𝑛,𝑠,𝑙)

Proof of Theorem caucvgprlemm
StepHypRef Expression
1 1pi 6470 . . . . 5 1𝑜N
2 caucvgpr.bnd . . . . 5 (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
3 fveq2 5205 . . . . . . 7 (𝑗 = 1𝑜 → (𝐹𝑗) = (𝐹‘1𝑜))
43breq2d 3803 . . . . . 6 (𝑗 = 1𝑜 → (𝐴 <Q (𝐹𝑗) ↔ 𝐴 <Q (𝐹‘1𝑜)))
54rspcv 2669 . . . . 5 (1𝑜N → (∀𝑗N 𝐴 <Q (𝐹𝑗) → 𝐴 <Q (𝐹‘1𝑜)))
61, 2, 5mpsyl 63 . . . 4 (𝜑𝐴 <Q (𝐹‘1𝑜))
7 ltrelnq 6520 . . . . . 6 <Q ⊆ (Q × Q)
87brel 4419 . . . . 5 (𝐴 <Q (𝐹‘1𝑜) → (𝐴Q ∧ (𝐹‘1𝑜) ∈ Q))
98simpld 109 . . . 4 (𝐴 <Q (𝐹‘1𝑜) → 𝐴Q)
10 halfnqq 6565 . . . 4 (𝐴Q → ∃𝑠Q (𝑠 +Q 𝑠) = 𝐴)
116, 9, 103syl 17 . . 3 (𝜑 → ∃𝑠Q (𝑠 +Q 𝑠) = 𝐴)
12 simplr 490 . . . . . 6 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → 𝑠Q)
13 archrecnq 6818 . . . . . . . 8 (𝑠Q → ∃𝑗N (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑠)
1412, 13syl 14 . . . . . . 7 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → ∃𝑗N (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑠)
15 simpr 107 . . . . . . . . . . . 12 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑠) → (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑠)
16 simplr 490 . . . . . . . . . . . . . 14 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑠) → 𝑗N)
17 nnnq 6577 . . . . . . . . . . . . . 14 (𝑗N → [⟨𝑗, 1𝑜⟩] ~QQ)
18 recclnq 6547 . . . . . . . . . . . . . 14 ([⟨𝑗, 1𝑜⟩] ~QQ → (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) ∈ Q)
1916, 17, 183syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑠) → (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) ∈ Q)
2012ad2antrr 465 . . . . . . . . . . . . 13 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑠) → 𝑠Q)
21 ltanqg 6555 . . . . . . . . . . . . 13 (((*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) ∈ Q𝑠Q𝑠Q) → ((*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑠 ↔ (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝑠 +Q 𝑠)))
2219, 20, 20, 21syl3anc 1146 . . . . . . . . . . . 12 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑠) → ((*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑠 ↔ (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝑠 +Q 𝑠)))
2315, 22mpbid 139 . . . . . . . . . . 11 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑠) → (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝑠 +Q 𝑠))
24 simpllr 494 . . . . . . . . . . 11 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑠) → (𝑠 +Q 𝑠) = 𝐴)
2523, 24breqtrd 3815 . . . . . . . . . 10 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑠) → (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝐴)
26 rsp 2386 . . . . . . . . . . . . 13 (∀𝑗N 𝐴 <Q (𝐹𝑗) → (𝑗N𝐴 <Q (𝐹𝑗)))
272, 26syl 14 . . . . . . . . . . . 12 (𝜑 → (𝑗N𝐴 <Q (𝐹𝑗)))
2827ad4antr 471 . . . . . . . . . . 11 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑠) → (𝑗N𝐴 <Q (𝐹𝑗)))
2916, 28mpd 13 . . . . . . . . . 10 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑠) → 𝐴 <Q (𝐹𝑗))
30 ltsonq 6553 . . . . . . . . . . 11 <Q Or Q
3130, 7sotri 4747 . . . . . . . . . 10 (((𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝐴𝐴 <Q (𝐹𝑗)) → (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗))
3225, 29, 31syl2anc 397 . . . . . . . . 9 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑠) → (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗))
3332ex 112 . . . . . . . 8 ((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) → ((*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑠 → (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)))
3433reximdva 2438 . . . . . . 7 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → (∃𝑗N (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) <Q 𝑠 → ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)))
3514, 34mpd 13 . . . . . 6 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗))
36 oveq1 5546 . . . . . . . . 9 (𝑙 = 𝑠 → (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) = (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )))
3736breq1d 3801 . . . . . . . 8 (𝑙 = 𝑠 → ((𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗) ↔ (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)))
3837rexbidv 2344 . . . . . . 7 (𝑙 = 𝑠 → (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗) ↔ ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)))
39 caucvgpr.lim . . . . . . . . 9 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩
4039fveq2i 5208 . . . . . . . 8 (1st𝐿) = (1st ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩)
41 nqex 6518 . . . . . . . . . 10 Q ∈ V
4241rabex 3928 . . . . . . . . 9 {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)} ∈ V
4341rabex 3928 . . . . . . . . 9 {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢} ∈ V
4442, 43op1st 5800 . . . . . . . 8 (1st ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩) = {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}
4540, 44eqtri 2076 . . . . . . 7 (1st𝐿) = {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}
4638, 45elrab2 2722 . . . . . 6 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)))
4712, 35, 46sylanbrc 402 . . . . 5 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → 𝑠 ∈ (1st𝐿))
4847ex 112 . . . 4 ((𝜑𝑠Q) → ((𝑠 +Q 𝑠) = 𝐴𝑠 ∈ (1st𝐿)))
4948reximdva 2438 . . 3 (𝜑 → (∃𝑠Q (𝑠 +Q 𝑠) = 𝐴 → ∃𝑠Q 𝑠 ∈ (1st𝐿)))
5011, 49mpd 13 . 2 (𝜑 → ∃𝑠Q 𝑠 ∈ (1st𝐿))
51 caucvgpr.f . . . . . 6 (𝜑𝐹:NQ)
521a1i 9 . . . . . 6 (𝜑 → 1𝑜N)
5351, 52ffvelrnd 5330 . . . . 5 (𝜑 → (𝐹‘1𝑜) ∈ Q)
54 1nq 6521 . . . . 5 1QQ
55 addclnq 6530 . . . . 5 (((𝐹‘1𝑜) ∈ Q ∧ 1QQ) → ((𝐹‘1𝑜) +Q 1Q) ∈ Q)
5653, 54, 55sylancl 398 . . . 4 (𝜑 → ((𝐹‘1𝑜) +Q 1Q) ∈ Q)
57 addclnq 6530 . . . 4 ((((𝐹‘1𝑜) +Q 1Q) ∈ Q ∧ 1QQ) → (((𝐹‘1𝑜) +Q 1Q) +Q 1Q) ∈ Q)
5856, 54, 57sylancl 398 . . 3 (𝜑 → (((𝐹‘1𝑜) +Q 1Q) +Q 1Q) ∈ Q)
59 df-1nqqs 6506 . . . . . . . . 9 1Q = [⟨1𝑜, 1𝑜⟩] ~Q
6059fveq2i 5208 . . . . . . . 8 (*Q‘1Q) = (*Q‘[⟨1𝑜, 1𝑜⟩] ~Q )
61 rec1nq 6550 . . . . . . . 8 (*Q‘1Q) = 1Q
6260, 61eqtr3i 2078 . . . . . . 7 (*Q‘[⟨1𝑜, 1𝑜⟩] ~Q ) = 1Q
6362oveq2i 5550 . . . . . 6 ((𝐹‘1𝑜) +Q (*Q‘[⟨1𝑜, 1𝑜⟩] ~Q )) = ((𝐹‘1𝑜) +Q 1Q)
64 ltaddnq 6562 . . . . . . 7 ((((𝐹‘1𝑜) +Q 1Q) ∈ Q ∧ 1QQ) → ((𝐹‘1𝑜) +Q 1Q) <Q (((𝐹‘1𝑜) +Q 1Q) +Q 1Q))
6556, 54, 64sylancl 398 . . . . . 6 (𝜑 → ((𝐹‘1𝑜) +Q 1Q) <Q (((𝐹‘1𝑜) +Q 1Q) +Q 1Q))
6663, 65syl5eqbr 3824 . . . . 5 (𝜑 → ((𝐹‘1𝑜) +Q (*Q‘[⟨1𝑜, 1𝑜⟩] ~Q )) <Q (((𝐹‘1𝑜) +Q 1Q) +Q 1Q))
67 opeq1 3576 . . . . . . . . . 10 (𝑗 = 1𝑜 → ⟨𝑗, 1𝑜⟩ = ⟨1𝑜, 1𝑜⟩)
6867eceq1d 6172 . . . . . . . . 9 (𝑗 = 1𝑜 → [⟨𝑗, 1𝑜⟩] ~Q = [⟨1𝑜, 1𝑜⟩] ~Q )
6968fveq2d 5209 . . . . . . . 8 (𝑗 = 1𝑜 → (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) = (*Q‘[⟨1𝑜, 1𝑜⟩] ~Q ))
703, 69oveq12d 5557 . . . . . . 7 (𝑗 = 1𝑜 → ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) = ((𝐹‘1𝑜) +Q (*Q‘[⟨1𝑜, 1𝑜⟩] ~Q )))
7170breq1d 3801 . . . . . 6 (𝑗 = 1𝑜 → (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (((𝐹‘1𝑜) +Q 1Q) +Q 1Q) ↔ ((𝐹‘1𝑜) +Q (*Q‘[⟨1𝑜, 1𝑜⟩] ~Q )) <Q (((𝐹‘1𝑜) +Q 1Q) +Q 1Q)))
7271rspcev 2673 . . . . 5 ((1𝑜N ∧ ((𝐹‘1𝑜) +Q (*Q‘[⟨1𝑜, 1𝑜⟩] ~Q )) <Q (((𝐹‘1𝑜) +Q 1Q) +Q 1Q)) → ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (((𝐹‘1𝑜) +Q 1Q) +Q 1Q))
7352, 66, 72syl2anc 397 . . . 4 (𝜑 → ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (((𝐹‘1𝑜) +Q 1Q) +Q 1Q))
74 breq2 3795 . . . . . 6 (𝑢 = (((𝐹‘1𝑜) +Q 1Q) +Q 1Q) → (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢 ↔ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (((𝐹‘1𝑜) +Q 1Q) +Q 1Q)))
7574rexbidv 2344 . . . . 5 (𝑢 = (((𝐹‘1𝑜) +Q 1Q) +Q 1Q) → (∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢 ↔ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (((𝐹‘1𝑜) +Q 1Q) +Q 1Q)))
7639fveq2i 5208 . . . . . 6 (2nd𝐿) = (2nd ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩)
7742, 43op2nd 5801 . . . . . 6 (2nd ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩) = {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}
7876, 77eqtri 2076 . . . . 5 (2nd𝐿) = {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}
7975, 78elrab2 2722 . . . 4 ((((𝐹‘1𝑜) +Q 1Q) +Q 1Q) ∈ (2nd𝐿) ↔ ((((𝐹‘1𝑜) +Q 1Q) +Q 1Q) ∈ Q ∧ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (((𝐹‘1𝑜) +Q 1Q) +Q 1Q)))
8058, 73, 79sylanbrc 402 . . 3 (𝜑 → (((𝐹‘1𝑜) +Q 1Q) +Q 1Q) ∈ (2nd𝐿))
81 eleq1 2116 . . . 4 (𝑟 = (((𝐹‘1𝑜) +Q 1Q) +Q 1Q) → (𝑟 ∈ (2nd𝐿) ↔ (((𝐹‘1𝑜) +Q 1Q) +Q 1Q) ∈ (2nd𝐿)))
8281rspcev 2673 . . 3 (((((𝐹‘1𝑜) +Q 1Q) +Q 1Q) ∈ Q ∧ (((𝐹‘1𝑜) +Q 1Q) +Q 1Q) ∈ (2nd𝐿)) → ∃𝑟Q 𝑟 ∈ (2nd𝐿))
8358, 80, 82syl2anc 397 . 2 (𝜑 → ∃𝑟Q 𝑟 ∈ (2nd𝐿))
8450, 83jca 294 1 (𝜑 → (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐿)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102   = wceq 1259  wcel 1409  wral 2323  wrex 2324  {crab 2327  cop 3405   class class class wbr 3791  wf 4925  cfv 4929  (class class class)co 5539  1st c1st 5792  2nd c2nd 5793  1𝑜c1o 6024  [cec 6134  Ncnpi 6427   <N clti 6430   ~Q ceq 6434  Qcnq 6435  1Qc1q 6436   +Q cplq 6437  *Qcrq 6439   <Q cltq 6440
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3899  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-iinf 4338
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-int 3643  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-tr 3882  df-eprel 4053  df-id 4057  df-po 4060  df-iso 4061  df-iord 4130  df-on 4132  df-suc 4135  df-iom 4341  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-1st 5794  df-2nd 5795  df-recs 5950  df-irdg 5987  df-1o 6031  df-oadd 6035  df-omul 6036  df-er 6136  df-ec 6138  df-qs 6142  df-ni 6459  df-pli 6460  df-mi 6461  df-lti 6462  df-plpq 6499  df-mpq 6500  df-enq 6502  df-nqqs 6503  df-plqqs 6504  df-mqqs 6505  df-1nqqs 6506  df-rq 6507  df-ltnqqs 6508
This theorem is referenced by:  caucvgprlemcl  6831
  Copyright terms: Public domain W3C validator