ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemm GIF version

Theorem caucvgprlemm 7476
Description: Lemma for caucvgpr 7490. The putative limit is inhabited. (Contributed by Jim Kingdon, 27-Sep-2020.)
Hypotheses
Ref Expression
caucvgpr.f (𝜑𝐹:NQ)
caucvgpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
caucvgpr.bnd (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
caucvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
Assertion
Ref Expression
caucvgprlemm (𝜑 → (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐿)))
Distinct variable groups:   𝐴,𝑗,𝑠   𝑗,𝐹,𝑙   𝐹,𝑟   𝑢,𝐹,𝑗   𝐿,𝑟   𝜑,𝑗,𝑠   𝑠,𝑙
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑛,𝑟,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑟,𝑙)   𝐹(𝑘,𝑛,𝑠)   𝐿(𝑢,𝑗,𝑘,𝑛,𝑠,𝑙)

Proof of Theorem caucvgprlemm
StepHypRef Expression
1 fveq2 5421 . . . . . 6 (𝑗 = 1o → (𝐹𝑗) = (𝐹‘1o))
21breq2d 3941 . . . . 5 (𝑗 = 1o → (𝐴 <Q (𝐹𝑗) ↔ 𝐴 <Q (𝐹‘1o)))
3 caucvgpr.bnd . . . . 5 (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
4 1pi 7123 . . . . . 6 1oN
54a1i 9 . . . . 5 (𝜑 → 1oN)
62, 3, 5rspcdva 2794 . . . 4 (𝜑𝐴 <Q (𝐹‘1o))
7 ltrelnq 7173 . . . . . 6 <Q ⊆ (Q × Q)
87brel 4591 . . . . 5 (𝐴 <Q (𝐹‘1o) → (𝐴Q ∧ (𝐹‘1o) ∈ Q))
98simpld 111 . . . 4 (𝐴 <Q (𝐹‘1o) → 𝐴Q)
10 halfnqq 7218 . . . 4 (𝐴Q → ∃𝑠Q (𝑠 +Q 𝑠) = 𝐴)
116, 9, 103syl 17 . . 3 (𝜑 → ∃𝑠Q (𝑠 +Q 𝑠) = 𝐴)
12 simplr 519 . . . . . 6 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → 𝑠Q)
13 archrecnq 7471 . . . . . . . 8 (𝑠Q → ∃𝑗N (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠)
1412, 13syl 14 . . . . . . 7 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → ∃𝑗N (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠)
15 simpr 109 . . . . . . . . . . . 12 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠)
16 simplr 519 . . . . . . . . . . . . . 14 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → 𝑗N)
17 nnnq 7230 . . . . . . . . . . . . . 14 (𝑗N → [⟨𝑗, 1o⟩] ~QQ)
18 recclnq 7200 . . . . . . . . . . . . . 14 ([⟨𝑗, 1o⟩] ~QQ → (*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ Q)
1916, 17, 183syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → (*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ Q)
2012ad2antrr 479 . . . . . . . . . . . . 13 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → 𝑠Q)
21 ltanqg 7208 . . . . . . . . . . . . 13 (((*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ Q𝑠Q𝑠Q) → ((*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠 ↔ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝑠 +Q 𝑠)))
2219, 20, 20, 21syl3anc 1216 . . . . . . . . . . . 12 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → ((*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠 ↔ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝑠 +Q 𝑠)))
2315, 22mpbid 146 . . . . . . . . . . 11 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝑠 +Q 𝑠))
24 simpllr 523 . . . . . . . . . . 11 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → (𝑠 +Q 𝑠) = 𝐴)
2523, 24breqtrd 3954 . . . . . . . . . 10 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝐴)
26 rsp 2480 . . . . . . . . . . . . 13 (∀𝑗N 𝐴 <Q (𝐹𝑗) → (𝑗N𝐴 <Q (𝐹𝑗)))
273, 26syl 14 . . . . . . . . . . . 12 (𝜑 → (𝑗N𝐴 <Q (𝐹𝑗)))
2827ad4antr 485 . . . . . . . . . . 11 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → (𝑗N𝐴 <Q (𝐹𝑗)))
2916, 28mpd 13 . . . . . . . . . 10 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → 𝐴 <Q (𝐹𝑗))
30 ltsonq 7206 . . . . . . . . . . 11 <Q Or Q
3130, 7sotri 4934 . . . . . . . . . 10 (((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝐴𝐴 <Q (𝐹𝑗)) → (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))
3225, 29, 31syl2anc 408 . . . . . . . . 9 (((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) ∧ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠) → (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))
3332ex 114 . . . . . . . 8 ((((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) ∧ 𝑗N) → ((*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠 → (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
3433reximdva 2534 . . . . . . 7 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → (∃𝑗N (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑠 → ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
3514, 34mpd 13 . . . . . 6 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))
36 oveq1 5781 . . . . . . . . 9 (𝑙 = 𝑠 → (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )))
3736breq1d 3939 . . . . . . . 8 (𝑙 = 𝑠 → ((𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
3837rexbidv 2438 . . . . . . 7 (𝑙 = 𝑠 → (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
39 caucvgpr.lim . . . . . . . . 9 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
4039fveq2i 5424 . . . . . . . 8 (1st𝐿) = (1st ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩)
41 nqex 7171 . . . . . . . . . 10 Q ∈ V
4241rabex 4072 . . . . . . . . 9 {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)} ∈ V
4341rabex 4072 . . . . . . . . 9 {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢} ∈ V
4442, 43op1st 6044 . . . . . . . 8 (1st ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩) = {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}
4540, 44eqtri 2160 . . . . . . 7 (1st𝐿) = {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}
4638, 45elrab2 2843 . . . . . 6 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
4712, 35, 46sylanbrc 413 . . . . 5 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → 𝑠 ∈ (1st𝐿))
4847ex 114 . . . 4 ((𝜑𝑠Q) → ((𝑠 +Q 𝑠) = 𝐴𝑠 ∈ (1st𝐿)))
4948reximdva 2534 . . 3 (𝜑 → (∃𝑠Q (𝑠 +Q 𝑠) = 𝐴 → ∃𝑠Q 𝑠 ∈ (1st𝐿)))
5011, 49mpd 13 . 2 (𝜑 → ∃𝑠Q 𝑠 ∈ (1st𝐿))
51 caucvgpr.f . . . . . 6 (𝜑𝐹:NQ)
5251, 5ffvelrnd 5556 . . . . 5 (𝜑 → (𝐹‘1o) ∈ Q)
53 1nq 7174 . . . . 5 1QQ
54 addclnq 7183 . . . . 5 (((𝐹‘1o) ∈ Q ∧ 1QQ) → ((𝐹‘1o) +Q 1Q) ∈ Q)
5552, 53, 54sylancl 409 . . . 4 (𝜑 → ((𝐹‘1o) +Q 1Q) ∈ Q)
56 addclnq 7183 . . . 4 ((((𝐹‘1o) +Q 1Q) ∈ Q ∧ 1QQ) → (((𝐹‘1o) +Q 1Q) +Q 1Q) ∈ Q)
5755, 53, 56sylancl 409 . . 3 (𝜑 → (((𝐹‘1o) +Q 1Q) +Q 1Q) ∈ Q)
58 df-1nqqs 7159 . . . . . . . . 9 1Q = [⟨1o, 1o⟩] ~Q
5958fveq2i 5424 . . . . . . . 8 (*Q‘1Q) = (*Q‘[⟨1o, 1o⟩] ~Q )
60 rec1nq 7203 . . . . . . . 8 (*Q‘1Q) = 1Q
6159, 60eqtr3i 2162 . . . . . . 7 (*Q‘[⟨1o, 1o⟩] ~Q ) = 1Q
6261oveq2i 5785 . . . . . 6 ((𝐹‘1o) +Q (*Q‘[⟨1o, 1o⟩] ~Q )) = ((𝐹‘1o) +Q 1Q)
63 ltaddnq 7215 . . . . . . 7 ((((𝐹‘1o) +Q 1Q) ∈ Q ∧ 1QQ) → ((𝐹‘1o) +Q 1Q) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q))
6455, 53, 63sylancl 409 . . . . . 6 (𝜑 → ((𝐹‘1o) +Q 1Q) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q))
6562, 64eqbrtrid 3963 . . . . 5 (𝜑 → ((𝐹‘1o) +Q (*Q‘[⟨1o, 1o⟩] ~Q )) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q))
66 opeq1 3705 . . . . . . . . . 10 (𝑗 = 1o → ⟨𝑗, 1o⟩ = ⟨1o, 1o⟩)
6766eceq1d 6465 . . . . . . . . 9 (𝑗 = 1o → [⟨𝑗, 1o⟩] ~Q = [⟨1o, 1o⟩] ~Q )
6867fveq2d 5425 . . . . . . . 8 (𝑗 = 1o → (*Q‘[⟨𝑗, 1o⟩] ~Q ) = (*Q‘[⟨1o, 1o⟩] ~Q ))
691, 68oveq12d 5792 . . . . . . 7 (𝑗 = 1o → ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = ((𝐹‘1o) +Q (*Q‘[⟨1o, 1o⟩] ~Q )))
7069breq1d 3939 . . . . . 6 (𝑗 = 1o → (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q) ↔ ((𝐹‘1o) +Q (*Q‘[⟨1o, 1o⟩] ~Q )) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q)))
7170rspcev 2789 . . . . 5 ((1oN ∧ ((𝐹‘1o) +Q (*Q‘[⟨1o, 1o⟩] ~Q )) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q)) → ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q))
725, 65, 71syl2anc 408 . . . 4 (𝜑 → ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q))
73 breq2 3933 . . . . . 6 (𝑢 = (((𝐹‘1o) +Q 1Q) +Q 1Q) → (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q)))
7473rexbidv 2438 . . . . 5 (𝑢 = (((𝐹‘1o) +Q 1Q) +Q 1Q) → (∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q)))
7539fveq2i 5424 . . . . . 6 (2nd𝐿) = (2nd ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩)
7642, 43op2nd 6045 . . . . . 6 (2nd ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩) = {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}
7775, 76eqtri 2160 . . . . 5 (2nd𝐿) = {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}
7874, 77elrab2 2843 . . . 4 ((((𝐹‘1o) +Q 1Q) +Q 1Q) ∈ (2nd𝐿) ↔ ((((𝐹‘1o) +Q 1Q) +Q 1Q) ∈ Q ∧ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (((𝐹‘1o) +Q 1Q) +Q 1Q)))
7957, 72, 78sylanbrc 413 . . 3 (𝜑 → (((𝐹‘1o) +Q 1Q) +Q 1Q) ∈ (2nd𝐿))
80 eleq1 2202 . . . 4 (𝑟 = (((𝐹‘1o) +Q 1Q) +Q 1Q) → (𝑟 ∈ (2nd𝐿) ↔ (((𝐹‘1o) +Q 1Q) +Q 1Q) ∈ (2nd𝐿)))
8180rspcev 2789 . . 3 (((((𝐹‘1o) +Q 1Q) +Q 1Q) ∈ Q ∧ (((𝐹‘1o) +Q 1Q) +Q 1Q) ∈ (2nd𝐿)) → ∃𝑟Q 𝑟 ∈ (2nd𝐿))
8257, 79, 81syl2anc 408 . 2 (𝜑 → ∃𝑟Q 𝑟 ∈ (2nd𝐿))
8350, 82jca 304 1 (𝜑 → (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐿)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  wral 2416  wrex 2417  {crab 2420  cop 3530   class class class wbr 3929  wf 5119  cfv 5123  (class class class)co 5774  1st c1st 6036  2nd c2nd 6037  1oc1o 6306  [cec 6427  Ncnpi 7080   <N clti 7083   ~Q ceq 7087  Qcnq 7088  1Qc1q 7089   +Q cplq 7090  *Qcrq 7092   <Q cltq 7093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-mqqs 7158  df-1nqqs 7159  df-rq 7160  df-ltnqqs 7161
This theorem is referenced by:  caucvgprlemcl  7484
  Copyright terms: Public domain W3C validator