Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem5 Structured version   Visualization version   GIF version

Theorem poimirlem5 34912
Description: Lemma for poimir 34940 to establish that, for the simplices defined by a walk along the edges of an 𝑁-cube, if the starting vertex is not opposite a given face, it is the earliest vertex of the face on the walk. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0 (𝜑𝑁 ∈ ℕ)
poimirlem22.s 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
poimirlem9.1 (𝜑𝑇𝑆)
poimirlem5.2 (𝜑 → 0 < (2nd𝑇))
Assertion
Ref Expression
poimirlem5 (𝜑 → (𝐹‘0) = (1st ‘(1st𝑇)))
Distinct variable groups:   𝑓,𝑗,𝑡,𝑦   𝜑,𝑗,𝑦   𝑗,𝐹,𝑦   𝑗,𝑁,𝑦   𝑇,𝑗,𝑦   𝜑,𝑡   𝑓,𝐾,𝑗,𝑡   𝑓,𝑁,𝑡   𝑇,𝑓   𝑓,𝐹,𝑡   𝑡,𝑇   𝑆,𝑗,𝑡,𝑦
Allowed substitution hints:   𝜑(𝑓)   𝑆(𝑓)   𝐾(𝑦)

Proof of Theorem poimirlem5
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 poimirlem9.1 . . . 4 (𝜑𝑇𝑆)
2 fveq2 6670 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (2nd𝑡) = (2nd𝑇))
32breq2d 5078 . . . . . . . . . . 11 (𝑡 = 𝑇 → (𝑦 < (2nd𝑡) ↔ 𝑦 < (2nd𝑇)))
43ifbid 4489 . . . . . . . . . 10 (𝑡 = 𝑇 → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)))
54csbeq1d 3887 . . . . . . . . 9 (𝑡 = 𝑇if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))
6 2fveq3 6675 . . . . . . . . . . 11 (𝑡 = 𝑇 → (1st ‘(1st𝑡)) = (1st ‘(1st𝑇)))
7 2fveq3 6675 . . . . . . . . . . . . . 14 (𝑡 = 𝑇 → (2nd ‘(1st𝑡)) = (2nd ‘(1st𝑇)))
87imaeq1d 5928 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → ((2nd ‘(1st𝑡)) “ (1...𝑗)) = ((2nd ‘(1st𝑇)) “ (1...𝑗)))
98xpeq1d 5584 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}))
107imaeq1d 5928 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → ((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)))
1110xpeq1d 5584 . . . . . . . . . . . 12 (𝑡 = 𝑇 → (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))
129, 11uneq12d 4140 . . . . . . . . . . 11 (𝑡 = 𝑇 → ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))
136, 12oveq12d 7174 . . . . . . . . . 10 (𝑡 = 𝑇 → ((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
1413csbeq2dv 3890 . . . . . . . . 9 (𝑡 = 𝑇if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
155, 14eqtrd 2856 . . . . . . . 8 (𝑡 = 𝑇if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
1615mpteq2dv 5162 . . . . . . 7 (𝑡 = 𝑇 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
1716eqeq2d 2832 . . . . . 6 (𝑡 = 𝑇 → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
18 poimirlem22.s . . . . . 6 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
1917, 18elrab2 3683 . . . . 5 (𝑇𝑆 ↔ (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
2019simprbi 499 . . . 4 (𝑇𝑆𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
211, 20syl 17 . . 3 (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
22 breq1 5069 . . . . . . 7 (𝑦 = 0 → (𝑦 < (2nd𝑇) ↔ 0 < (2nd𝑇)))
23 id 22 . . . . . . 7 (𝑦 = 0 → 𝑦 = 0)
2422, 23ifbieq1d 4490 . . . . . 6 (𝑦 = 0 → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) = if(0 < (2nd𝑇), 0, (𝑦 + 1)))
25 poimirlem5.2 . . . . . . 7 (𝜑 → 0 < (2nd𝑇))
2625iftrued 4475 . . . . . 6 (𝜑 → if(0 < (2nd𝑇), 0, (𝑦 + 1)) = 0)
2724, 26sylan9eqr 2878 . . . . 5 ((𝜑𝑦 = 0) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) = 0)
2827csbeq1d 3887 . . . 4 ((𝜑𝑦 = 0) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = 0 / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
29 c0ex 10635 . . . . . . 7 0 ∈ V
30 oveq2 7164 . . . . . . . . . . . . 13 (𝑗 = 0 → (1...𝑗) = (1...0))
31 fz10 12929 . . . . . . . . . . . . 13 (1...0) = ∅
3230, 31syl6eq 2872 . . . . . . . . . . . 12 (𝑗 = 0 → (1...𝑗) = ∅)
3332imaeq2d 5929 . . . . . . . . . . 11 (𝑗 = 0 → ((2nd ‘(1st𝑇)) “ (1...𝑗)) = ((2nd ‘(1st𝑇)) “ ∅))
3433xpeq1d 5584 . . . . . . . . . 10 (𝑗 = 0 → (((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑇)) “ ∅) × {1}))
35 oveq1 7163 . . . . . . . . . . . . . 14 (𝑗 = 0 → (𝑗 + 1) = (0 + 1))
36 0p1e1 11760 . . . . . . . . . . . . . 14 (0 + 1) = 1
3735, 36syl6eq 2872 . . . . . . . . . . . . 13 (𝑗 = 0 → (𝑗 + 1) = 1)
3837oveq1d 7171 . . . . . . . . . . . 12 (𝑗 = 0 → ((𝑗 + 1)...𝑁) = (1...𝑁))
3938imaeq2d 5929 . . . . . . . . . . 11 (𝑗 = 0 → ((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ (1...𝑁)))
4039xpeq1d 5584 . . . . . . . . . 10 (𝑗 = 0 → (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0}))
4134, 40uneq12d 4140 . . . . . . . . 9 (𝑗 = 0 → ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ ∅) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0})))
42 ima0 5945 . . . . . . . . . . . . 13 ((2nd ‘(1st𝑇)) “ ∅) = ∅
4342xpeq1i 5581 . . . . . . . . . . . 12 (((2nd ‘(1st𝑇)) “ ∅) × {1}) = (∅ × {1})
44 0xp 5649 . . . . . . . . . . . 12 (∅ × {1}) = ∅
4543, 44eqtri 2844 . . . . . . . . . . 11 (((2nd ‘(1st𝑇)) “ ∅) × {1}) = ∅
4645uneq1i 4135 . . . . . . . . . 10 ((((2nd ‘(1st𝑇)) “ ∅) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0})) = (∅ ∪ (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0}))
47 uncom 4129 . . . . . . . . . 10 (∅ ∪ (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0}) ∪ ∅)
48 un0 4344 . . . . . . . . . 10 ((((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0}) ∪ ∅) = (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0})
4946, 47, 483eqtri 2848 . . . . . . . . 9 ((((2nd ‘(1st𝑇)) “ ∅) × {1}) ∪ (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0})) = (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0})
5041, 49syl6eq 2872 . . . . . . . 8 (𝑗 = 0 → ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})) = (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0}))
5150oveq2d 7172 . . . . . . 7 (𝑗 = 0 → ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0})))
5229, 51csbie 3918 . . . . . 6 0 / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0}))
53 elrabi 3675 . . . . . . . . . . . . . . 15 (𝑇 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
5453, 18eleq2s 2931 . . . . . . . . . . . . . 14 (𝑇𝑆𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
551, 54syl 17 . . . . . . . . . . . . 13 (𝜑𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
56 xp1st 7721 . . . . . . . . . . . . 13 (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
5755, 56syl 17 . . . . . . . . . . . 12 (𝜑 → (1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
58 xp2nd 7722 . . . . . . . . . . . 12 ((1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
5957, 58syl 17 . . . . . . . . . . 11 (𝜑 → (2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
60 fvex 6683 . . . . . . . . . . . 12 (2nd ‘(1st𝑇)) ∈ V
61 f1oeq1 6604 . . . . . . . . . . . 12 (𝑓 = (2nd ‘(1st𝑇)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁)))
6260, 61elab 3667 . . . . . . . . . . 11 ((2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
6359, 62sylib 220 . . . . . . . . . 10 (𝜑 → (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
64 f1ofo 6622 . . . . . . . . . 10 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(1st𝑇)):(1...𝑁)–onto→(1...𝑁))
6563, 64syl 17 . . . . . . . . 9 (𝜑 → (2nd ‘(1st𝑇)):(1...𝑁)–onto→(1...𝑁))
66 foima 6595 . . . . . . . . 9 ((2nd ‘(1st𝑇)):(1...𝑁)–onto→(1...𝑁) → ((2nd ‘(1st𝑇)) “ (1...𝑁)) = (1...𝑁))
6765, 66syl 17 . . . . . . . 8 (𝜑 → ((2nd ‘(1st𝑇)) “ (1...𝑁)) = (1...𝑁))
6867xpeq1d 5584 . . . . . . 7 (𝜑 → (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0}) = ((1...𝑁) × {0}))
6968oveq2d 7172 . . . . . 6 (𝜑 → ((1st ‘(1st𝑇)) ∘f + (((2nd ‘(1st𝑇)) “ (1...𝑁)) × {0})) = ((1st ‘(1st𝑇)) ∘f + ((1...𝑁) × {0})))
7052, 69syl5eq 2868 . . . . 5 (𝜑0 / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((1...𝑁) × {0})))
7170adantr 483 . . . 4 ((𝜑𝑦 = 0) → 0 / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((1...𝑁) × {0})))
7228, 71eqtrd 2856 . . 3 ((𝜑𝑦 = 0) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((1...𝑁) × {0})))
73 poimir.0 . . . . 5 (𝜑𝑁 ∈ ℕ)
74 nnm1nn0 11939 . . . . 5 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
7573, 74syl 17 . . . 4 (𝜑 → (𝑁 − 1) ∈ ℕ0)
76 0elfz 13005 . . . 4 ((𝑁 − 1) ∈ ℕ0 → 0 ∈ (0...(𝑁 − 1)))
7775, 76syl 17 . . 3 (𝜑 → 0 ∈ (0...(𝑁 − 1)))
78 ovexd 7191 . . 3 (𝜑 → ((1st ‘(1st𝑇)) ∘f + ((1...𝑁) × {0})) ∈ V)
7921, 72, 77, 78fvmptd 6775 . 2 (𝜑 → (𝐹‘0) = ((1st ‘(1st𝑇)) ∘f + ((1...𝑁) × {0})))
80 ovexd 7191 . . 3 (𝜑 → (1...𝑁) ∈ V)
81 xp1st 7721 . . . . 5 ((1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)))
8257, 81syl 17 . . . 4 (𝜑 → (1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)))
83 elmapfn 8429 . . . 4 ((1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)) → (1st ‘(1st𝑇)) Fn (1...𝑁))
8482, 83syl 17 . . 3 (𝜑 → (1st ‘(1st𝑇)) Fn (1...𝑁))
85 fnconstg 6567 . . . 4 (0 ∈ V → ((1...𝑁) × {0}) Fn (1...𝑁))
8629, 85mp1i 13 . . 3 (𝜑 → ((1...𝑁) × {0}) Fn (1...𝑁))
87 eqidd 2822 . . 3 ((𝜑𝑛 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑛) = ((1st ‘(1st𝑇))‘𝑛))
8829fvconst2 6966 . . . 4 (𝑛 ∈ (1...𝑁) → (((1...𝑁) × {0})‘𝑛) = 0)
8988adantl 484 . . 3 ((𝜑𝑛 ∈ (1...𝑁)) → (((1...𝑁) × {0})‘𝑛) = 0)
90 elmapi 8428 . . . . . . . 8 ((1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)) → (1st ‘(1st𝑇)):(1...𝑁)⟶(0..^𝐾))
9182, 90syl 17 . . . . . . 7 (𝜑 → (1st ‘(1st𝑇)):(1...𝑁)⟶(0..^𝐾))
9291ffvelrnda 6851 . . . . . 6 ((𝜑𝑛 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑛) ∈ (0..^𝐾))
93 elfzonn0 13083 . . . . . 6 (((1st ‘(1st𝑇))‘𝑛) ∈ (0..^𝐾) → ((1st ‘(1st𝑇))‘𝑛) ∈ ℕ0)
9492, 93syl 17 . . . . 5 ((𝜑𝑛 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑛) ∈ ℕ0)
9594nn0cnd 11958 . . . 4 ((𝜑𝑛 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑛) ∈ ℂ)
9695addid1d 10840 . . 3 ((𝜑𝑛 ∈ (1...𝑁)) → (((1st ‘(1st𝑇))‘𝑛) + 0) = ((1st ‘(1st𝑇))‘𝑛))
9780, 84, 86, 84, 87, 89, 96offveq 7430 . 2 (𝜑 → ((1st ‘(1st𝑇)) ∘f + ((1...𝑁) × {0})) = (1st ‘(1st𝑇)))
9879, 97eqtrd 2856 1 (𝜑 → (𝐹‘0) = (1st ‘(1st𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  {cab 2799  {crab 3142  Vcvv 3494  csb 3883  cun 3934  c0 4291  ifcif 4467  {csn 4567   class class class wbr 5066  cmpt 5146   × cxp 5553  cima 5558   Fn wfn 6350  wf 6351  ontowfo 6353  1-1-ontowf1o 6354  cfv 6355  (class class class)co 7156  f cof 7407  1st c1st 7687  2nd c2nd 7688  m cmap 8406  0cc0 10537  1c1 10538   + caddc 10540   < clt 10675  cmin 10870  cn 11638  0cn0 11898  ...cfz 12893  ..^cfzo 13034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035
This theorem is referenced by:  poimirlem12  34919  poimirlem14  34921
  Copyright terms: Public domain W3C validator