MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashxplem Structured version   Visualization version   GIF version

Theorem hashxplem 13412
Description: Lemma for hashxp 13413. (Contributed by Paul Chapman, 30-Nov-2012.)
Hypothesis
Ref Expression
hashxplem.1 𝐵 ∈ Fin
Assertion
Ref Expression
hashxplem (𝐴 ∈ Fin → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵)))

Proof of Theorem hashxplem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpeq1 5280 . . . 4 (𝑥 = ∅ → (𝑥 × 𝐵) = (∅ × 𝐵))
21fveq2d 6356 . . 3 (𝑥 = ∅ → (♯‘(𝑥 × 𝐵)) = (♯‘(∅ × 𝐵)))
3 fveq2 6352 . . . 4 (𝑥 = ∅ → (♯‘𝑥) = (♯‘∅))
43oveq1d 6828 . . 3 (𝑥 = ∅ → ((♯‘𝑥) · (♯‘𝐵)) = ((♯‘∅) · (♯‘𝐵)))
52, 4eqeq12d 2775 . 2 (𝑥 = ∅ → ((♯‘(𝑥 × 𝐵)) = ((♯‘𝑥) · (♯‘𝐵)) ↔ (♯‘(∅ × 𝐵)) = ((♯‘∅) · (♯‘𝐵))))
6 xpeq1 5280 . . . 4 (𝑥 = 𝑦 → (𝑥 × 𝐵) = (𝑦 × 𝐵))
76fveq2d 6356 . . 3 (𝑥 = 𝑦 → (♯‘(𝑥 × 𝐵)) = (♯‘(𝑦 × 𝐵)))
8 fveq2 6352 . . . 4 (𝑥 = 𝑦 → (♯‘𝑥) = (♯‘𝑦))
98oveq1d 6828 . . 3 (𝑥 = 𝑦 → ((♯‘𝑥) · (♯‘𝐵)) = ((♯‘𝑦) · (♯‘𝐵)))
107, 9eqeq12d 2775 . 2 (𝑥 = 𝑦 → ((♯‘(𝑥 × 𝐵)) = ((♯‘𝑥) · (♯‘𝐵)) ↔ (♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵))))
11 xpeq1 5280 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥 × 𝐵) = ((𝑦 ∪ {𝑧}) × 𝐵))
1211fveq2d 6356 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → (♯‘(𝑥 × 𝐵)) = (♯‘((𝑦 ∪ {𝑧}) × 𝐵)))
13 fveq2 6352 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (♯‘𝑥) = (♯‘(𝑦 ∪ {𝑧})))
1413oveq1d 6828 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → ((♯‘𝑥) · (♯‘𝐵)) = ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵)))
1512, 14eqeq12d 2775 . 2 (𝑥 = (𝑦 ∪ {𝑧}) → ((♯‘(𝑥 × 𝐵)) = ((♯‘𝑥) · (♯‘𝐵)) ↔ (♯‘((𝑦 ∪ {𝑧}) × 𝐵)) = ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵))))
16 xpeq1 5280 . . . 4 (𝑥 = 𝐴 → (𝑥 × 𝐵) = (𝐴 × 𝐵))
1716fveq2d 6356 . . 3 (𝑥 = 𝐴 → (♯‘(𝑥 × 𝐵)) = (♯‘(𝐴 × 𝐵)))
18 fveq2 6352 . . . 4 (𝑥 = 𝐴 → (♯‘𝑥) = (♯‘𝐴))
1918oveq1d 6828 . . 3 (𝑥 = 𝐴 → ((♯‘𝑥) · (♯‘𝐵)) = ((♯‘𝐴) · (♯‘𝐵)))
2017, 19eqeq12d 2775 . 2 (𝑥 = 𝐴 → ((♯‘(𝑥 × 𝐵)) = ((♯‘𝑥) · (♯‘𝐵)) ↔ (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵))))
21 hashxplem.1 . . . 4 𝐵 ∈ Fin
22 hashcl 13339 . . . . . 6 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
2322nn0cnd 11545 . . . . 5 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℂ)
2423mul02d 10426 . . . 4 (𝐵 ∈ Fin → (0 · (♯‘𝐵)) = 0)
2521, 24ax-mp 5 . . 3 (0 · (♯‘𝐵)) = 0
26 hash0 13350 . . . 4 (♯‘∅) = 0
2726oveq1i 6823 . . 3 ((♯‘∅) · (♯‘𝐵)) = (0 · (♯‘𝐵))
28 0xp 5356 . . . . 5 (∅ × 𝐵) = ∅
2928fveq2i 6355 . . . 4 (♯‘(∅ × 𝐵)) = (♯‘∅)
3029, 26eqtri 2782 . . 3 (♯‘(∅ × 𝐵)) = 0
3125, 27, 303eqtr4ri 2793 . 2 (♯‘(∅ × 𝐵)) = ((♯‘∅) · (♯‘𝐵))
32 oveq1 6820 . . . . 5 ((♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵)) → ((♯‘(𝑦 × 𝐵)) + (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (♯‘𝐵)))
3332adantl 473 . . . 4 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵))) → ((♯‘(𝑦 × 𝐵)) + (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (♯‘𝐵)))
34 xpundir 5329 . . . . . . 7 ((𝑦 ∪ {𝑧}) × 𝐵) = ((𝑦 × 𝐵) ∪ ({𝑧} × 𝐵))
3534fveq2i 6355 . . . . . 6 (♯‘((𝑦 ∪ {𝑧}) × 𝐵)) = (♯‘((𝑦 × 𝐵) ∪ ({𝑧} × 𝐵)))
36 xpfi 8396 . . . . . . . . 9 ((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝑦 × 𝐵) ∈ Fin)
3721, 36mpan2 709 . . . . . . . 8 (𝑦 ∈ Fin → (𝑦 × 𝐵) ∈ Fin)
38 inxp 5410 . . . . . . . . 9 ((𝑦 × 𝐵) ∩ ({𝑧} × 𝐵)) = ((𝑦 ∩ {𝑧}) × (𝐵𝐵))
39 disjsn 4390 . . . . . . . . . . . 12 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
4039biimpri 218 . . . . . . . . . . 11 𝑧𝑦 → (𝑦 ∩ {𝑧}) = ∅)
4140xpeq1d 5295 . . . . . . . . . 10 𝑧𝑦 → ((𝑦 ∩ {𝑧}) × (𝐵𝐵)) = (∅ × (𝐵𝐵)))
42 0xp 5356 . . . . . . . . . 10 (∅ × (𝐵𝐵)) = ∅
4341, 42syl6eq 2810 . . . . . . . . 9 𝑧𝑦 → ((𝑦 ∩ {𝑧}) × (𝐵𝐵)) = ∅)
4438, 43syl5eq 2806 . . . . . . . 8 𝑧𝑦 → ((𝑦 × 𝐵) ∩ ({𝑧} × 𝐵)) = ∅)
45 snfi 8203 . . . . . . . . . 10 {𝑧} ∈ Fin
46 xpfi 8396 . . . . . . . . . 10 (({𝑧} ∈ Fin ∧ 𝐵 ∈ Fin) → ({𝑧} × 𝐵) ∈ Fin)
4745, 21, 46mp2an 710 . . . . . . . . 9 ({𝑧} × 𝐵) ∈ Fin
48 hashun 13363 . . . . . . . . 9 (((𝑦 × 𝐵) ∈ Fin ∧ ({𝑧} × 𝐵) ∈ Fin ∧ ((𝑦 × 𝐵) ∩ ({𝑧} × 𝐵)) = ∅) → (♯‘((𝑦 × 𝐵) ∪ ({𝑧} × 𝐵))) = ((♯‘(𝑦 × 𝐵)) + (♯‘({𝑧} × 𝐵))))
4947, 48mp3an2 1561 . . . . . . . 8 (((𝑦 × 𝐵) ∈ Fin ∧ ((𝑦 × 𝐵) ∩ ({𝑧} × 𝐵)) = ∅) → (♯‘((𝑦 × 𝐵) ∪ ({𝑧} × 𝐵))) = ((♯‘(𝑦 × 𝐵)) + (♯‘({𝑧} × 𝐵))))
5037, 44, 49syl2an 495 . . . . . . 7 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (♯‘((𝑦 × 𝐵) ∪ ({𝑧} × 𝐵))) = ((♯‘(𝑦 × 𝐵)) + (♯‘({𝑧} × 𝐵))))
51 snex 5057 . . . . . . . . . . 11 {𝑧} ∈ V
5221elexi 3353 . . . . . . . . . . 11 𝐵 ∈ V
5351, 52xpcomen 8216 . . . . . . . . . 10 ({𝑧} × 𝐵) ≈ (𝐵 × {𝑧})
54 vex 3343 . . . . . . . . . . 11 𝑧 ∈ V
5552, 54xpsnen 8209 . . . . . . . . . 10 (𝐵 × {𝑧}) ≈ 𝐵
5653, 55entri 8175 . . . . . . . . 9 ({𝑧} × 𝐵) ≈ 𝐵
57 hashen 13329 . . . . . . . . . 10 ((({𝑧} × 𝐵) ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘({𝑧} × 𝐵)) = (♯‘𝐵) ↔ ({𝑧} × 𝐵) ≈ 𝐵))
5847, 21, 57mp2an 710 . . . . . . . . 9 ((♯‘({𝑧} × 𝐵)) = (♯‘𝐵) ↔ ({𝑧} × 𝐵) ≈ 𝐵)
5956, 58mpbir 221 . . . . . . . 8 (♯‘({𝑧} × 𝐵)) = (♯‘𝐵)
6059oveq2i 6824 . . . . . . 7 ((♯‘(𝑦 × 𝐵)) + (♯‘({𝑧} × 𝐵))) = ((♯‘(𝑦 × 𝐵)) + (♯‘𝐵))
6150, 60syl6eq 2810 . . . . . 6 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (♯‘((𝑦 × 𝐵) ∪ ({𝑧} × 𝐵))) = ((♯‘(𝑦 × 𝐵)) + (♯‘𝐵)))
6235, 61syl5eq 2806 . . . . 5 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (♯‘((𝑦 ∪ {𝑧}) × 𝐵)) = ((♯‘(𝑦 × 𝐵)) + (♯‘𝐵)))
6362adantr 472 . . . 4 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵))) → (♯‘((𝑦 ∪ {𝑧}) × 𝐵)) = ((♯‘(𝑦 × 𝐵)) + (♯‘𝐵)))
64 hashunsng 13373 . . . . . . . 8 (𝑧 ∈ V → ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1)))
6554, 64ax-mp 5 . . . . . . 7 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1))
6665oveq1d 6828 . . . . . 6 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵)) = (((♯‘𝑦) + 1) · (♯‘𝐵)))
67 hashcl 13339 . . . . . . . . . 10 (𝑦 ∈ Fin → (♯‘𝑦) ∈ ℕ0)
6867nn0cnd 11545 . . . . . . . . 9 (𝑦 ∈ Fin → (♯‘𝑦) ∈ ℂ)
69 ax-1cn 10186 . . . . . . . . . 10 1 ∈ ℂ
70 nn0cn 11494 . . . . . . . . . . 11 ((♯‘𝐵) ∈ ℕ0 → (♯‘𝐵) ∈ ℂ)
7121, 22, 70mp2b 10 . . . . . . . . . 10 (♯‘𝐵) ∈ ℂ
72 adddir 10223 . . . . . . . . . 10 (((♯‘𝑦) ∈ ℂ ∧ 1 ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → (((♯‘𝑦) + 1) · (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (1 · (♯‘𝐵))))
7369, 71, 72mp3an23 1565 . . . . . . . . 9 ((♯‘𝑦) ∈ ℂ → (((♯‘𝑦) + 1) · (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (1 · (♯‘𝐵))))
7468, 73syl 17 . . . . . . . 8 (𝑦 ∈ Fin → (((♯‘𝑦) + 1) · (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (1 · (♯‘𝐵))))
7571mulid2i 10235 . . . . . . . . 9 (1 · (♯‘𝐵)) = (♯‘𝐵)
7675oveq2i 6824 . . . . . . . 8 (((♯‘𝑦) · (♯‘𝐵)) + (1 · (♯‘𝐵))) = (((♯‘𝑦) · (♯‘𝐵)) + (♯‘𝐵))
7774, 76syl6eq 2810 . . . . . . 7 (𝑦 ∈ Fin → (((♯‘𝑦) + 1) · (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (♯‘𝐵)))
7877adantr 472 . . . . . 6 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (((♯‘𝑦) + 1) · (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (♯‘𝐵)))
7966, 78eqtrd 2794 . . . . 5 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (♯‘𝐵)))
8079adantr 472 . . . 4 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵))) → ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (♯‘𝐵)))
8133, 63, 803eqtr4d 2804 . . 3 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵))) → (♯‘((𝑦 ∪ {𝑧}) × 𝐵)) = ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵)))
8281ex 449 . 2 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵)) → (♯‘((𝑦 ∪ {𝑧}) × 𝐵)) = ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵))))
835, 10, 15, 20, 31, 82findcard2s 8366 1 (𝐴 ∈ Fin → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  Vcvv 3340  cun 3713  cin 3714  c0 4058  {csn 4321   class class class wbr 4804   × cxp 5264  cfv 6049  (class class class)co 6813  cen 8118  Fincfn 8121  cc 10126  0cc0 10128  1c1 10129   + caddc 10131   · cmul 10133  0cn0 11484  chash 13311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-hash 13312
This theorem is referenced by:  hashxp  13413
  Copyright terms: Public domain W3C validator