| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2p2e4 | Structured version Visualization version GIF version | ||
| Description: Two plus two equals four. For more information, see "2+2=4 Trivia" on the Metamath Proof Explorer Home Page: mmset.html#trivia. This proof is simple, but it depends on many other proof steps because 2 and 4 are complex numbers and thus it depends on our construction of complex numbers. The proof o2p2e4 8547 is similar but proves 2 + 2 = 4 using ordinal natural numbers (finite integers starting at 0), so that proof depends on fewer intermediate steps. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 2p2e4 | ⊢ (2 + 2) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12295 | . . 3 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq2i 7410 | . 2 ⊢ (2 + 2) = (2 + (1 + 1)) |
| 3 | df-4 12297 | . . 3 ⊢ 4 = (3 + 1) | |
| 4 | df-3 12296 | . . . 4 ⊢ 3 = (2 + 1) | |
| 5 | 4 | oveq1i 7409 | . . 3 ⊢ (3 + 1) = ((2 + 1) + 1) |
| 6 | 2cn 12307 | . . . 4 ⊢ 2 ∈ ℂ | |
| 7 | ax-1cn 11179 | . . . 4 ⊢ 1 ∈ ℂ | |
| 8 | 6, 7, 7 | addassi 11237 | . . 3 ⊢ ((2 + 1) + 1) = (2 + (1 + 1)) |
| 9 | 3, 5, 8 | 3eqtri 2761 | . 2 ⊢ 4 = (2 + (1 + 1)) |
| 10 | 2, 9 | eqtr4i 2760 | 1 ⊢ (2 + 2) = 4 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 (class class class)co 7399 1c1 11122 + caddc 11124 2c2 12287 3c3 12288 4c4 12289 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-1cn 11179 ax-addcl 11181 ax-addass 11186 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-iota 6480 df-fv 6535 df-ov 7402 df-2 12295 df-3 12296 df-4 12297 |
| This theorem is referenced by: 2t2e4 12396 i4 14210 4bc2eq6 14335 bpoly4 16062 fsumcube 16063 ef01bndlem 16187 6gcd4e2 16542 pythagtriplem1 16821 prmlem2 17124 43prm 17126 1259lem4 17138 2503lem1 17141 2503lem2 17142 2503lem3 17143 4001lem1 17145 4001lem4 17148 cphipval2 25178 quart1lem 26801 log2ub 26895 hgt750lem2 34605 3lexlogpow5ineq1 41989 3lexlogpow5ineq5 41995 3cubeslem3l 42634 3cubeslem3r 42635 wallispi2lem1 46030 stirlinglem8 46040 sqwvfourb 46188 fmtnorec4 47481 m11nprm 47533 3exp4mod41 47548 gbowgt5 47694 gbpart7 47699 sbgoldbaltlem1 47711 sbgoldbalt 47713 sgoldbeven3prm 47715 mogoldbb 47717 nnsum3primes4 47720 2t6m3t4e0 48209 ackval1012 48556 2p2ne5 49382 |
| Copyright terms: Public domain | W3C validator |