| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2p2e4 | Structured version Visualization version GIF version | ||
| Description: Two plus two equals four. For more information, see "2+2=4 Trivia" on the Metamath Proof Explorer Home Page: mmset.html#trivia. This proof is simple, but it depends on many other proof steps because 2 and 4 are complex numbers and thus it depends on our construction of complex numbers. The proof o2p2e4 8505 is similar but proves 2 + 2 = 4 using ordinal natural numbers (finite integers starting at 0), so that proof depends on fewer intermediate steps. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 2p2e4 | ⊢ (2 + 2) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12249 | . . 3 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq2i 7398 | . 2 ⊢ (2 + 2) = (2 + (1 + 1)) |
| 3 | df-4 12251 | . . 3 ⊢ 4 = (3 + 1) | |
| 4 | df-3 12250 | . . . 4 ⊢ 3 = (2 + 1) | |
| 5 | 4 | oveq1i 7397 | . . 3 ⊢ (3 + 1) = ((2 + 1) + 1) |
| 6 | 2cn 12261 | . . . 4 ⊢ 2 ∈ ℂ | |
| 7 | ax-1cn 11126 | . . . 4 ⊢ 1 ∈ ℂ | |
| 8 | 6, 7, 7 | addassi 11184 | . . 3 ⊢ ((2 + 1) + 1) = (2 + (1 + 1)) |
| 9 | 3, 5, 8 | 3eqtri 2756 | . 2 ⊢ 4 = (2 + (1 + 1)) |
| 10 | 2, 9 | eqtr4i 2755 | 1 ⊢ (2 + 2) = 4 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7387 1c1 11069 + caddc 11071 2c2 12241 3c3 12242 4c4 12243 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11126 ax-addcl 11128 ax-addass 11133 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-2 12249 df-3 12250 df-4 12251 |
| This theorem is referenced by: 2t2e4 12345 i4 14169 4bc2eq6 14294 bpoly4 16025 fsumcube 16026 ef01bndlem 16152 6gcd4e2 16508 pythagtriplem1 16787 prmlem2 17090 43prm 17092 1259lem4 17104 2503lem1 17107 2503lem2 17108 2503lem3 17109 4001lem1 17111 4001lem4 17114 cphipval2 25141 quart1lem 26765 log2ub 26859 hgt750lem2 34643 3lexlogpow5ineq1 42042 3lexlogpow5ineq5 42048 3cubeslem3l 42674 3cubeslem3r 42675 wallispi2lem1 46069 stirlinglem8 46079 sqwvfourb 46227 fmtnorec4 47550 m11nprm 47602 3exp4mod41 47617 gbowgt5 47763 gbpart7 47768 sbgoldbaltlem1 47780 sbgoldbalt 47782 sgoldbeven3prm 47784 mogoldbb 47786 nnsum3primes4 47789 pgnbgreunbgrlem2lem3 48106 2t6m3t4e0 48336 ackval1012 48679 2p2ne5 49787 |
| Copyright terms: Public domain | W3C validator |