![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2p2e4 | Structured version Visualization version GIF version |
Description: Two plus two equals four. For more information, see "2+2=4 Trivia" on the Metamath Proof Explorer Home Page: mmset.html#trivia. This proof is simple, but it depends on many other proof steps because 2 and 4 are complex numbers and thus it depends on our construction of complex numbers. The proof o2p2e4 8573 is similar but proves 2 + 2 = 4 using ordinal natural numbers (finite integers starting at 0), so that proof depends on fewer intermediate steps. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
2p2e4 | ⊢ (2 + 2) = 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 12321 | . . 3 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq2i 7437 | . 2 ⊢ (2 + 2) = (2 + (1 + 1)) |
3 | df-4 12323 | . . 3 ⊢ 4 = (3 + 1) | |
4 | df-3 12322 | . . . 4 ⊢ 3 = (2 + 1) | |
5 | 4 | oveq1i 7436 | . . 3 ⊢ (3 + 1) = ((2 + 1) + 1) |
6 | 2cn 12333 | . . . 4 ⊢ 2 ∈ ℂ | |
7 | ax-1cn 11205 | . . . 4 ⊢ 1 ∈ ℂ | |
8 | 6, 7, 7 | addassi 11263 | . . 3 ⊢ ((2 + 1) + 1) = (2 + (1 + 1)) |
9 | 3, 5, 8 | 3eqtri 2765 | . 2 ⊢ 4 = (2 + (1 + 1)) |
10 | 2, 9 | eqtr4i 2764 | 1 ⊢ (2 + 2) = 4 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1535 (class class class)co 7426 1c1 11148 + caddc 11150 2c2 12313 3c3 12314 4c4 12315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-ext 2704 ax-1cn 11205 ax-addcl 11207 ax-addass 11212 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1087 df-tru 1538 df-fal 1548 df-ex 1775 df-sb 2061 df-clab 2711 df-cleq 2725 df-clel 2812 df-rab 3433 df-v 3479 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4916 df-br 5151 df-iota 6511 df-fv 6567 df-ov 7429 df-2 12321 df-3 12322 df-4 12323 |
This theorem is referenced by: 2t2e4 12422 i4 14230 4bc2eq6 14355 bpoly4 16082 fsumcube 16083 ef01bndlem 16207 6gcd4e2 16562 pythagtriplem1 16840 prmlem2 17144 43prm 17146 1259lem4 17158 2503lem1 17161 2503lem2 17162 2503lem3 17163 4001lem1 17165 4001lem4 17168 cphipval2 25271 quart1lem 26895 log2ub 26989 hgt750lem2 34607 3lexlogpow5ineq1 41997 3lexlogpow5ineq5 42003 3cubeslem3l 42635 3cubeslem3r 42636 wallispi2lem1 45984 stirlinglem8 45994 sqwvfourb 46142 fmtnorec4 47431 m11nprm 47483 3exp4mod41 47498 gbowgt5 47644 gbpart7 47649 sbgoldbaltlem1 47661 sbgoldbalt 47663 sgoldbeven3prm 47665 mogoldbb 47667 nnsum3primes4 47670 2t6m3t4e0 48118 ackval1012 48468 2p2ne5 48951 |
Copyright terms: Public domain | W3C validator |