![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2p2e4 | Structured version Visualization version GIF version |
Description: Two plus two equals four. For more information, see "2+2=4 Trivia" on the Metamath Proof Explorer Home Page: mmset.html#trivia. This proof is simple, but it depends on many other proof steps because 2 and 4 are complex numbers and thus it depends on our construction of complex numbers. The proof o2p2e4 8591 is similar but proves 2 + 2 = 4 using ordinal natural numbers (finite integers starting at 0), so that proof depends on fewer intermediate steps. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
2p2e4 | ⊢ (2 + 2) = 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 12350 | . . 3 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq2i 7454 | . 2 ⊢ (2 + 2) = (2 + (1 + 1)) |
3 | df-4 12352 | . . 3 ⊢ 4 = (3 + 1) | |
4 | df-3 12351 | . . . 4 ⊢ 3 = (2 + 1) | |
5 | 4 | oveq1i 7453 | . . 3 ⊢ (3 + 1) = ((2 + 1) + 1) |
6 | 2cn 12362 | . . . 4 ⊢ 2 ∈ ℂ | |
7 | ax-1cn 11236 | . . . 4 ⊢ 1 ∈ ℂ | |
8 | 6, 7, 7 | addassi 11294 | . . 3 ⊢ ((2 + 1) + 1) = (2 + (1 + 1)) |
9 | 3, 5, 8 | 3eqtri 2772 | . 2 ⊢ 4 = (2 + (1 + 1)) |
10 | 2, 9 | eqtr4i 2771 | 1 ⊢ (2 + 2) = 4 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 (class class class)co 7443 1c1 11179 + caddc 11181 2c2 12342 3c3 12343 4c4 12344 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-1cn 11236 ax-addcl 11238 ax-addass 11243 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6520 df-fv 6576 df-ov 7446 df-2 12350 df-3 12351 df-4 12352 |
This theorem is referenced by: 2t2e4 12451 i4 14247 4bc2eq6 14372 bpoly4 16101 fsumcube 16102 ef01bndlem 16226 6gcd4e2 16579 pythagtriplem1 16857 prmlem2 17161 43prm 17163 1259lem4 17175 2503lem1 17178 2503lem2 17179 2503lem3 17180 4001lem1 17182 4001lem4 17185 cphipval2 25286 quart1lem 26908 log2ub 27002 hgt750lem2 34621 3lexlogpow5ineq1 42003 3lexlogpow5ineq5 42009 3cubeslem3l 42634 3cubeslem3r 42635 wallispi2lem1 45981 stirlinglem8 45991 sqwvfourb 46139 fmtnorec4 47412 m11nprm 47464 3exp4mod41 47479 gbowgt5 47625 gbpart7 47630 sbgoldbaltlem1 47642 sbgoldbalt 47644 sgoldbeven3prm 47646 mogoldbb 47648 nnsum3primes4 47651 2t6m3t4e0 48062 ackval1012 48413 2p2ne5 48881 |
Copyright terms: Public domain | W3C validator |