| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2p2e4 | Structured version Visualization version GIF version | ||
| Description: Two plus two equals four. For more information, see "2+2=4 Trivia" on the Metamath Proof Explorer Home Page: mmset.html#trivia. This proof is simple, but it depends on many other proof steps because 2 and 4 are complex numbers and thus it depends on our construction of complex numbers. The proof o2p2e4 8482 is similar but proves 2 + 2 = 4 using ordinal natural numbers (finite integers starting at 0), so that proof depends on fewer intermediate steps. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 2p2e4 | ⊢ (2 + 2) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12225 | . . 3 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq2i 7380 | . 2 ⊢ (2 + 2) = (2 + (1 + 1)) |
| 3 | df-4 12227 | . . 3 ⊢ 4 = (3 + 1) | |
| 4 | df-3 12226 | . . . 4 ⊢ 3 = (2 + 1) | |
| 5 | 4 | oveq1i 7379 | . . 3 ⊢ (3 + 1) = ((2 + 1) + 1) |
| 6 | 2cn 12237 | . . . 4 ⊢ 2 ∈ ℂ | |
| 7 | ax-1cn 11102 | . . . 4 ⊢ 1 ∈ ℂ | |
| 8 | 6, 7, 7 | addassi 11160 | . . 3 ⊢ ((2 + 1) + 1) = (2 + (1 + 1)) |
| 9 | 3, 5, 8 | 3eqtri 2756 | . 2 ⊢ 4 = (2 + (1 + 1)) |
| 10 | 2, 9 | eqtr4i 2755 | 1 ⊢ (2 + 2) = 4 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7369 1c1 11045 + caddc 11047 2c2 12217 3c3 12218 4c4 12219 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11102 ax-addcl 11104 ax-addass 11109 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-2 12225 df-3 12226 df-4 12227 |
| This theorem is referenced by: 2t2e4 12321 i4 14145 4bc2eq6 14270 bpoly4 16001 fsumcube 16002 ef01bndlem 16128 6gcd4e2 16484 pythagtriplem1 16763 prmlem2 17066 43prm 17068 1259lem4 17080 2503lem1 17083 2503lem2 17084 2503lem3 17085 4001lem1 17087 4001lem4 17090 cphipval2 25117 quart1lem 26741 log2ub 26835 hgt750lem2 34616 3lexlogpow5ineq1 42015 3lexlogpow5ineq5 42021 3cubeslem3l 42647 3cubeslem3r 42648 wallispi2lem1 46042 stirlinglem8 46052 sqwvfourb 46200 fmtnorec4 47523 m11nprm 47575 3exp4mod41 47590 gbowgt5 47736 gbpart7 47741 sbgoldbaltlem1 47753 sbgoldbalt 47755 sgoldbeven3prm 47757 mogoldbb 47759 nnsum3primes4 47762 pgnbgreunbgrlem2lem3 48079 2t6m3t4e0 48309 ackval1012 48652 2p2ne5 49760 |
| Copyright terms: Public domain | W3C validator |