Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnsum3primes4 Structured version   Visualization version   GIF version

Theorem nnsum3primes4 40962
Description: 4 is the sum of at most 3 (actually 2) primes. (Contributed by AV, 2-Aug-2020.)
Assertion
Ref Expression
nnsum3primes4 𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))
Distinct variable group:   𝑓,𝑑,𝑘

Proof of Theorem nnsum3primes4
StepHypRef Expression
1 2nn 11129 . 2 2 ∈ ℕ
2 1ne2 11184 . . . . 5 1 ≠ 2
3 1ex 9979 . . . . . 6 1 ∈ V
4 2ex 11036 . . . . . 6 2 ∈ V
53, 4, 4, 4fpr 6375 . . . . 5 (1 ≠ 2 → {⟨1, 2⟩, ⟨2, 2⟩}:{1, 2}⟶{2, 2})
6 2prm 15329 . . . . . . . 8 2 ∈ ℙ
76, 6pm3.2i 471 . . . . . . 7 (2 ∈ ℙ ∧ 2 ∈ ℙ)
84, 4prss 4319 . . . . . . 7 ((2 ∈ ℙ ∧ 2 ∈ ℙ) ↔ {2, 2} ⊆ ℙ)
97, 8mpbi 220 . . . . . 6 {2, 2} ⊆ ℙ
10 fss 6013 . . . . . 6 (({⟨1, 2⟩, ⟨2, 2⟩}:{1, 2}⟶{2, 2} ∧ {2, 2} ⊆ ℙ) → {⟨1, 2⟩, ⟨2, 2⟩}:{1, 2}⟶ℙ)
119, 10mpan2 706 . . . . 5 ({⟨1, 2⟩, ⟨2, 2⟩}:{1, 2}⟶{2, 2} → {⟨1, 2⟩, ⟨2, 2⟩}:{1, 2}⟶ℙ)
122, 5, 11mp2b 10 . . . 4 {⟨1, 2⟩, ⟨2, 2⟩}:{1, 2}⟶ℙ
13 prmex 15315 . . . . 5 ℙ ∈ V
14 prex 4870 . . . . 5 {1, 2} ∈ V
1513, 14elmap 7830 . . . 4 ({⟨1, 2⟩, ⟨2, 2⟩} ∈ (ℙ ↑𝑚 {1, 2}) ↔ {⟨1, 2⟩, ⟨2, 2⟩}:{1, 2}⟶ℙ)
1612, 15mpbir 221 . . 3 {⟨1, 2⟩, ⟨2, 2⟩} ∈ (ℙ ↑𝑚 {1, 2})
17 2re 11034 . . . . 5 2 ∈ ℝ
18 3re 11038 . . . . 5 3 ∈ ℝ
19 2lt3 11139 . . . . 5 2 < 3
2017, 18, 19ltleii 10104 . . . 4 2 ≤ 3
21 2cn 11035 . . . . . 6 2 ∈ ℂ
22 fveq2 6148 . . . . . . . 8 (𝑘 = 1 → ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘) = ({⟨1, 2⟩, ⟨2, 2⟩}‘1))
233, 4fvpr1 6410 . . . . . . . . 9 (1 ≠ 2 → ({⟨1, 2⟩, ⟨2, 2⟩}‘1) = 2)
242, 23ax-mp 5 . . . . . . . 8 ({⟨1, 2⟩, ⟨2, 2⟩}‘1) = 2
2522, 24syl6eq 2671 . . . . . . 7 (𝑘 = 1 → ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘) = 2)
26 fveq2 6148 . . . . . . . 8 (𝑘 = 2 → ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘) = ({⟨1, 2⟩, ⟨2, 2⟩}‘2))
274, 4fvpr2 6411 . . . . . . . . 9 (1 ≠ 2 → ({⟨1, 2⟩, ⟨2, 2⟩}‘2) = 2)
282, 27ax-mp 5 . . . . . . . 8 ({⟨1, 2⟩, ⟨2, 2⟩}‘2) = 2
2926, 28syl6eq 2671 . . . . . . 7 (𝑘 = 2 → ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘) = 2)
30 id 22 . . . . . . . 8 (2 ∈ ℂ → 2 ∈ ℂ)
3130ancri 574 . . . . . . 7 (2 ∈ ℂ → (2 ∈ ℂ ∧ 2 ∈ ℂ))
323jctl 563 . . . . . . 7 (2 ∈ ℂ → (1 ∈ V ∧ 2 ∈ ℂ))
332a1i 11 . . . . . . 7 (2 ∈ ℂ → 1 ≠ 2)
3425, 29, 31, 32, 33sumpr 14407 . . . . . 6 (2 ∈ ℂ → Σ𝑘 ∈ {1, 2} ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘) = (2 + 2))
3521, 34ax-mp 5 . . . . 5 Σ𝑘 ∈ {1, 2} ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘) = (2 + 2)
36 2p2e4 11088 . . . . 5 (2 + 2) = 4
3735, 36eqtr2i 2644 . . . 4 4 = Σ𝑘 ∈ {1, 2} ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘)
3820, 37pm3.2i 471 . . 3 (2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘))
39 fveq1 6147 . . . . . . 7 (𝑓 = {⟨1, 2⟩, ⟨2, 2⟩} → (𝑓𝑘) = ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘))
4039sumeq2sdv 14368 . . . . . 6 (𝑓 = {⟨1, 2⟩, ⟨2, 2⟩} → Σ𝑘 ∈ {1, 2} (𝑓𝑘) = Σ𝑘 ∈ {1, 2} ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘))
4140eqeq2d 2631 . . . . 5 (𝑓 = {⟨1, 2⟩, ⟨2, 2⟩} → (4 = Σ𝑘 ∈ {1, 2} (𝑓𝑘) ↔ 4 = Σ𝑘 ∈ {1, 2} ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘)))
4241anbi2d 739 . . . 4 (𝑓 = {⟨1, 2⟩, ⟨2, 2⟩} → ((2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)) ↔ (2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘))))
4342rspcev 3295 . . 3 (({⟨1, 2⟩, ⟨2, 2⟩} ∈ (ℙ ↑𝑚 {1, 2}) ∧ (2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘))) → ∃𝑓 ∈ (ℙ ↑𝑚 {1, 2})(2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)))
4416, 38, 43mp2an 707 . 2 𝑓 ∈ (ℙ ↑𝑚 {1, 2})(2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} (𝑓𝑘))
45 oveq2 6612 . . . . . 6 (𝑑 = 2 → (1...𝑑) = (1...2))
46 df-2 11023 . . . . . . . 8 2 = (1 + 1)
4746oveq2i 6615 . . . . . . 7 (1...2) = (1...(1 + 1))
48 1z 11351 . . . . . . . . 9 1 ∈ ℤ
49 fzpr 12338 . . . . . . . . 9 (1 ∈ ℤ → (1...(1 + 1)) = {1, (1 + 1)})
5048, 49ax-mp 5 . . . . . . . 8 (1...(1 + 1)) = {1, (1 + 1)}
51 1p1e2 11078 . . . . . . . . 9 (1 + 1) = 2
5251preq2i 4242 . . . . . . . 8 {1, (1 + 1)} = {1, 2}
5350, 52eqtri 2643 . . . . . . 7 (1...(1 + 1)) = {1, 2}
5447, 53eqtri 2643 . . . . . 6 (1...2) = {1, 2}
5545, 54syl6eq 2671 . . . . 5 (𝑑 = 2 → (1...𝑑) = {1, 2})
5655oveq2d 6620 . . . 4 (𝑑 = 2 → (ℙ ↑𝑚 (1...𝑑)) = (ℙ ↑𝑚 {1, 2}))
57 breq1 4616 . . . . 5 (𝑑 = 2 → (𝑑 ≤ 3 ↔ 2 ≤ 3))
5855sumeq1d 14365 . . . . . 6 (𝑑 = 2 → Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) = Σ𝑘 ∈ {1, 2} (𝑓𝑘))
5958eqeq2d 2631 . . . . 5 (𝑑 = 2 → (4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) ↔ 4 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)))
6057, 59anbi12d 746 . . . 4 (𝑑 = 2 → ((𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ (2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} (𝑓𝑘))))
6156, 60rexeqbidv 3142 . . 3 (𝑑 = 2 → (∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑𝑚 {1, 2})(2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} (𝑓𝑘))))
6261rspcev 3295 . 2 ((2 ∈ ℕ ∧ ∃𝑓 ∈ (ℙ ↑𝑚 {1, 2})(2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} (𝑓𝑘))) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
631, 44, 62mp2an 707 1 𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1480  wcel 1987  wne 2790  wrex 2908  Vcvv 3186  wss 3555  {cpr 4150  cop 4154   class class class wbr 4613  wf 5843  cfv 5847  (class class class)co 6604  𝑚 cmap 7802  cc 9878  1c1 9881   + caddc 9883  cle 10019  cn 10964  2c2 11014  3c3 11015  4c4 11016  cz 11321  ...cfz 12268  Σcsu 14350  cprime 15309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fz 12269  df-fzo 12407  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-sum 14351  df-dvds 14908  df-prm 15310
This theorem is referenced by:  nnsum4primes4  40963  nnsum3primesle9  40968
  Copyright terms: Public domain W3C validator