Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnsum3primes4 Structured version   Visualization version   GIF version

Theorem nnsum3primes4 43973
Description: 4 is the sum of at most 3 (actually 2) primes. (Contributed by AV, 2-Aug-2020.)
Assertion
Ref Expression
nnsum3primes4 𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))
Distinct variable group:   𝑓,𝑑,𝑘

Proof of Theorem nnsum3primes4
StepHypRef Expression
1 2nn 11711 . 2 2 ∈ ℕ
2 1ne2 11846 . . . . 5 1 ≠ 2
3 1ex 10637 . . . . . 6 1 ∈ V
4 2ex 11715 . . . . . 6 2 ∈ V
53, 4, 4, 4fpr 6916 . . . . 5 (1 ≠ 2 → {⟨1, 2⟩, ⟨2, 2⟩}:{1, 2}⟶{2, 2})
6 2prm 16036 . . . . . . . 8 2 ∈ ℙ
76, 6pm3.2i 473 . . . . . . 7 (2 ∈ ℙ ∧ 2 ∈ ℙ)
84, 4prss 4753 . . . . . . 7 ((2 ∈ ℙ ∧ 2 ∈ ℙ) ↔ {2, 2} ⊆ ℙ)
97, 8mpbi 232 . . . . . 6 {2, 2} ⊆ ℙ
10 fss 6527 . . . . . 6 (({⟨1, 2⟩, ⟨2, 2⟩}:{1, 2}⟶{2, 2} ∧ {2, 2} ⊆ ℙ) → {⟨1, 2⟩, ⟨2, 2⟩}:{1, 2}⟶ℙ)
119, 10mpan2 689 . . . . 5 ({⟨1, 2⟩, ⟨2, 2⟩}:{1, 2}⟶{2, 2} → {⟨1, 2⟩, ⟨2, 2⟩}:{1, 2}⟶ℙ)
122, 5, 11mp2b 10 . . . 4 {⟨1, 2⟩, ⟨2, 2⟩}:{1, 2}⟶ℙ
13 prmex 16021 . . . . 5 ℙ ∈ V
14 prex 5333 . . . . 5 {1, 2} ∈ V
1513, 14elmap 8435 . . . 4 ({⟨1, 2⟩, ⟨2, 2⟩} ∈ (ℙ ↑m {1, 2}) ↔ {⟨1, 2⟩, ⟨2, 2⟩}:{1, 2}⟶ℙ)
1612, 15mpbir 233 . . 3 {⟨1, 2⟩, ⟨2, 2⟩} ∈ (ℙ ↑m {1, 2})
17 2re 11712 . . . . 5 2 ∈ ℝ
18 3re 11718 . . . . 5 3 ∈ ℝ
19 2lt3 11810 . . . . 5 2 < 3
2017, 18, 19ltleii 10763 . . . 4 2 ≤ 3
21 2cn 11713 . . . . . 6 2 ∈ ℂ
22 fveq2 6670 . . . . . . . 8 (𝑘 = 1 → ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘) = ({⟨1, 2⟩, ⟨2, 2⟩}‘1))
233, 4fvpr1 6952 . . . . . . . . 9 (1 ≠ 2 → ({⟨1, 2⟩, ⟨2, 2⟩}‘1) = 2)
242, 23ax-mp 5 . . . . . . . 8 ({⟨1, 2⟩, ⟨2, 2⟩}‘1) = 2
2522, 24syl6eq 2872 . . . . . . 7 (𝑘 = 1 → ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘) = 2)
26 fveq2 6670 . . . . . . . 8 (𝑘 = 2 → ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘) = ({⟨1, 2⟩, ⟨2, 2⟩}‘2))
274, 4fvpr2 6953 . . . . . . . . 9 (1 ≠ 2 → ({⟨1, 2⟩, ⟨2, 2⟩}‘2) = 2)
282, 27ax-mp 5 . . . . . . . 8 ({⟨1, 2⟩, ⟨2, 2⟩}‘2) = 2
2926, 28syl6eq 2872 . . . . . . 7 (𝑘 = 2 → ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘) = 2)
30 id 22 . . . . . . . 8 (2 ∈ ℂ → 2 ∈ ℂ)
3130ancri 552 . . . . . . 7 (2 ∈ ℂ → (2 ∈ ℂ ∧ 2 ∈ ℂ))
323jctl 526 . . . . . . 7 (2 ∈ ℂ → (1 ∈ V ∧ 2 ∈ ℂ))
332a1i 11 . . . . . . 7 (2 ∈ ℂ → 1 ≠ 2)
3425, 29, 31, 32, 33sumpr 15103 . . . . . 6 (2 ∈ ℂ → Σ𝑘 ∈ {1, 2} ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘) = (2 + 2))
3521, 34ax-mp 5 . . . . 5 Σ𝑘 ∈ {1, 2} ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘) = (2 + 2)
36 2p2e4 11773 . . . . 5 (2 + 2) = 4
3735, 36eqtr2i 2845 . . . 4 4 = Σ𝑘 ∈ {1, 2} ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘)
3820, 37pm3.2i 473 . . 3 (2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘))
39 fveq1 6669 . . . . . . 7 (𝑓 = {⟨1, 2⟩, ⟨2, 2⟩} → (𝑓𝑘) = ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘))
4039sumeq2sdv 15061 . . . . . 6 (𝑓 = {⟨1, 2⟩, ⟨2, 2⟩} → Σ𝑘 ∈ {1, 2} (𝑓𝑘) = Σ𝑘 ∈ {1, 2} ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘))
4140eqeq2d 2832 . . . . 5 (𝑓 = {⟨1, 2⟩, ⟨2, 2⟩} → (4 = Σ𝑘 ∈ {1, 2} (𝑓𝑘) ↔ 4 = Σ𝑘 ∈ {1, 2} ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘)))
4241anbi2d 630 . . . 4 (𝑓 = {⟨1, 2⟩, ⟨2, 2⟩} → ((2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)) ↔ (2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘))))
4342rspcev 3623 . . 3 (({⟨1, 2⟩, ⟨2, 2⟩} ∈ (ℙ ↑m {1, 2}) ∧ (2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘))) → ∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)))
4416, 38, 43mp2an 690 . 2 𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} (𝑓𝑘))
45 oveq2 7164 . . . . . 6 (𝑑 = 2 → (1...𝑑) = (1...2))
46 df-2 11701 . . . . . . . 8 2 = (1 + 1)
4746oveq2i 7167 . . . . . . 7 (1...2) = (1...(1 + 1))
48 1z 12013 . . . . . . . . 9 1 ∈ ℤ
49 fzpr 12963 . . . . . . . . 9 (1 ∈ ℤ → (1...(1 + 1)) = {1, (1 + 1)})
5048, 49ax-mp 5 . . . . . . . 8 (1...(1 + 1)) = {1, (1 + 1)}
51 1p1e2 11763 . . . . . . . . 9 (1 + 1) = 2
5251preq2i 4673 . . . . . . . 8 {1, (1 + 1)} = {1, 2}
5350, 52eqtri 2844 . . . . . . 7 (1...(1 + 1)) = {1, 2}
5447, 53eqtri 2844 . . . . . 6 (1...2) = {1, 2}
5545, 54syl6eq 2872 . . . . 5 (𝑑 = 2 → (1...𝑑) = {1, 2})
5655oveq2d 7172 . . . 4 (𝑑 = 2 → (ℙ ↑m (1...𝑑)) = (ℙ ↑m {1, 2}))
57 breq1 5069 . . . . 5 (𝑑 = 2 → (𝑑 ≤ 3 ↔ 2 ≤ 3))
5855sumeq1d 15058 . . . . . 6 (𝑑 = 2 → Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) = Σ𝑘 ∈ {1, 2} (𝑓𝑘))
5958eqeq2d 2832 . . . . 5 (𝑑 = 2 → (4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) ↔ 4 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)))
6057, 59anbi12d 632 . . . 4 (𝑑 = 2 → ((𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ (2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} (𝑓𝑘))))
6156, 60rexeqbidv 3402 . . 3 (𝑑 = 2 → (∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} (𝑓𝑘))))
6261rspcev 3623 . 2 ((2 ∈ ℕ ∧ ∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} (𝑓𝑘))) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
631, 44, 62mp2an 690 1 𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))
Colors of variables: wff setvar class
Syntax hints:  wa 398   = wceq 1537  wcel 2114  wne 3016  wrex 3139  Vcvv 3494  wss 3936  {cpr 4569  cop 4573   class class class wbr 5066  wf 6351  cfv 6355  (class class class)co 7156  m cmap 8406  cc 10535  1c1 10538   + caddc 10540  cle 10676  cn 11638  2c2 11693  3c3 11694  4c4 11695  cz 11982  ...cfz 12893  Σcsu 15042  cprime 16015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043  df-dvds 15608  df-prm 16016
This theorem is referenced by:  nnsum4primes4  43974  nnsum3primesle9  43979
  Copyright terms: Public domain W3C validator