Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gbowgt5 Structured version   Visualization version   GIF version

Theorem gbowgt5 42077
Description: Any weak odd Goldbach number is greater than 5. (Contributed by AV, 20-Jul-2020.)
Assertion
Ref Expression
gbowgt5 (𝑍 ∈ GoldbachOddW → 5 < 𝑍)

Proof of Theorem gbowgt5
Dummy variables 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isgbow 42067 . 2 (𝑍 ∈ GoldbachOddW ↔ (𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟)))
2 prmuz2 15531 . . . . . . . . 9 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
3 eluz2 11806 . . . . . . . . 9 (𝑝 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝))
42, 3sylib 208 . . . . . . . 8 (𝑝 ∈ ℙ → (2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝))
5 prmuz2 15531 . . . . . . . . 9 (𝑞 ∈ ℙ → 𝑞 ∈ (ℤ‘2))
6 eluz2 11806 . . . . . . . . 9 (𝑞 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞))
75, 6sylib 208 . . . . . . . 8 (𝑞 ∈ ℙ → (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞))
84, 7anim12i 591 . . . . . . 7 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → ((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)))
9 prmuz2 15531 . . . . . . . 8 (𝑟 ∈ ℙ → 𝑟 ∈ (ℤ‘2))
10 eluz2 11806 . . . . . . . 8 (𝑟 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟))
119, 10sylib 208 . . . . . . 7 (𝑟 ∈ ℙ → (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟))
12 zre 11494 . . . . . . . . . . . . . 14 (𝑝 ∈ ℤ → 𝑝 ∈ ℝ)
13123ad2ant2 1126 . . . . . . . . . . . . 13 ((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) → 𝑝 ∈ ℝ)
14 zre 11494 . . . . . . . . . . . . . 14 (𝑞 ∈ ℤ → 𝑞 ∈ ℝ)
15143ad2ant2 1126 . . . . . . . . . . . . 13 ((2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞) → 𝑞 ∈ ℝ)
1613, 15anim12i 591 . . . . . . . . . . . 12 (((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)) → (𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ))
17 2re 11203 . . . . . . . . . . . . 13 2 ∈ ℝ
1817, 17pm3.2i 470 . . . . . . . . . . . 12 (2 ∈ ℝ ∧ 2 ∈ ℝ)
1916, 18jctil 561 . . . . . . . . . . 11 (((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)) → ((2 ∈ ℝ ∧ 2 ∈ ℝ) ∧ (𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ)))
20 simp3 1130 . . . . . . . . . . . 12 ((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) → 2 ≤ 𝑝)
21 simp3 1130 . . . . . . . . . . . 12 ((2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞) → 2 ≤ 𝑞)
2220, 21anim12i 591 . . . . . . . . . . 11 (((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)) → (2 ≤ 𝑝 ∧ 2 ≤ 𝑞))
23 le2add 10623 . . . . . . . . . . 11 (((2 ∈ ℝ ∧ 2 ∈ ℝ) ∧ (𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ)) → ((2 ≤ 𝑝 ∧ 2 ≤ 𝑞) → (2 + 2) ≤ (𝑝 + 𝑞)))
2419, 22, 23sylc 65 . . . . . . . . . 10 (((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)) → (2 + 2) ≤ (𝑝 + 𝑞))
25 2p2e4 11257 . . . . . . . . . . . . . . . . 17 (2 + 2) = 4
2625breq1i 4767 . . . . . . . . . . . . . . . 16 ((2 + 2) ≤ (𝑝 + 𝑞) ↔ 4 ≤ (𝑝 + 𝑞))
27 zaddcl 11530 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (𝑝 + 𝑞) ∈ ℤ)
2827zred 11595 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (𝑝 + 𝑞) ∈ ℝ)
2928adantr 472 . . . . . . . . . . . . . . . . . . . . 21 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) → (𝑝 + 𝑞) ∈ ℝ)
30 zre 11494 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 ∈ ℤ → 𝑟 ∈ ℝ)
31303ad2ant2 1126 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 𝑟 ∈ ℝ)
3229, 31anim12i 591 . . . . . . . . . . . . . . . . . . . 20 ((((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) ∧ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟)) → ((𝑝 + 𝑞) ∈ ℝ ∧ 𝑟 ∈ ℝ))
33 4re 11210 . . . . . . . . . . . . . . . . . . . . 21 4 ∈ ℝ
3433, 17pm3.2i 470 . . . . . . . . . . . . . . . . . . . 20 (4 ∈ ℝ ∧ 2 ∈ ℝ)
3532, 34jctil 561 . . . . . . . . . . . . . . . . . . 19 ((((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) ∧ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟)) → ((4 ∈ ℝ ∧ 2 ∈ ℝ) ∧ ((𝑝 + 𝑞) ∈ ℝ ∧ 𝑟 ∈ ℝ)))
36 simpr 479 . . . . . . . . . . . . . . . . . . . 20 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) → 4 ≤ (𝑝 + 𝑞))
37 simp3 1130 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 2 ≤ 𝑟)
3836, 37anim12i 591 . . . . . . . . . . . . . . . . . . 19 ((((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) ∧ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟)) → (4 ≤ (𝑝 + 𝑞) ∧ 2 ≤ 𝑟))
39 le2add 10623 . . . . . . . . . . . . . . . . . . 19 (((4 ∈ ℝ ∧ 2 ∈ ℝ) ∧ ((𝑝 + 𝑞) ∈ ℝ ∧ 𝑟 ∈ ℝ)) → ((4 ≤ (𝑝 + 𝑞) ∧ 2 ≤ 𝑟) → (4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟)))
4035, 38, 39sylc 65 . . . . . . . . . . . . . . . . . 18 ((((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) ∧ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟)) → (4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟))
41 4p2e6 11275 . . . . . . . . . . . . . . . . . . . . . . . . 25 (4 + 2) = 6
4241breq1i 4767 . . . . . . . . . . . . . . . . . . . . . . . 24 ((4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟) ↔ 6 ≤ ((𝑝 + 𝑞) + 𝑟))
43 5lt6 11317 . . . . . . . . . . . . . . . . . . . . . . . . 25 5 < 6
44 5re 11212 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5 ∈ ℝ
4544a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → 5 ∈ ℝ)
46 6re 11214 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6 ∈ ℝ
4746a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → 6 ∈ ℝ)
4827adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → (𝑝 + 𝑞) ∈ ℤ)
49 simpr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → 𝑟 ∈ ℤ)
5048, 49zaddcld 11599 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → ((𝑝 + 𝑞) + 𝑟) ∈ ℤ)
5150zred 11595 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → ((𝑝 + 𝑞) + 𝑟) ∈ ℝ)
52 ltletr 10242 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((5 ∈ ℝ ∧ 6 ∈ ℝ ∧ ((𝑝 + 𝑞) + 𝑟) ∈ ℝ) → ((5 < 6 ∧ 6 ≤ ((𝑝 + 𝑞) + 𝑟)) → 5 < ((𝑝 + 𝑞) + 𝑟)))
5345, 47, 51, 52syl3anc 1439 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → ((5 < 6 ∧ 6 ≤ ((𝑝 + 𝑞) + 𝑟)) → 5 < ((𝑝 + 𝑞) + 𝑟)))
5443, 53mpani 714 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → (6 ≤ ((𝑝 + 𝑞) + 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟)))
5542, 54syl5bi 232 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → ((4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟)))
5655expcom 450 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 ∈ ℤ → ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → ((4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟))))
57563ad2ant2 1126 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → ((4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟))))
5857com12 32 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → ((4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟))))
5958adantr 472 . . . . . . . . . . . . . . . . . . 19 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → ((4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟))))
6059imp 444 . . . . . . . . . . . . . . . . . 18 ((((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) ∧ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟)) → ((4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟)))
6140, 60mpd 15 . . . . . . . . . . . . . . . . 17 ((((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) ∧ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟)) → 5 < ((𝑝 + 𝑞) + 𝑟))
6261exp31 631 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (4 ≤ (𝑝 + 𝑞) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟))))
6326, 62syl5bi 232 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → ((2 + 2) ≤ (𝑝 + 𝑞) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟))))
6463expcom 450 . . . . . . . . . . . . . 14 (𝑞 ∈ ℤ → (𝑝 ∈ ℤ → ((2 + 2) ≤ (𝑝 + 𝑞) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟)))))
65643ad2ant2 1126 . . . . . . . . . . . . 13 ((2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞) → (𝑝 ∈ ℤ → ((2 + 2) ≤ (𝑝 + 𝑞) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟)))))
6665com12 32 . . . . . . . . . . . 12 (𝑝 ∈ ℤ → ((2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞) → ((2 + 2) ≤ (𝑝 + 𝑞) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟)))))
67663ad2ant2 1126 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) → ((2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞) → ((2 + 2) ≤ (𝑝 + 𝑞) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟)))))
6867imp 444 . . . . . . . . . 10 (((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)) → ((2 + 2) ≤ (𝑝 + 𝑞) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟))))
6924, 68mpd 15 . . . . . . . . 9 (((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟)))
7069imp 444 . . . . . . . 8 ((((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)) ∧ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟)) → 5 < ((𝑝 + 𝑞) + 𝑟))
71 breq2 4764 . . . . . . . 8 (𝑍 = ((𝑝 + 𝑞) + 𝑟) → (5 < 𝑍 ↔ 5 < ((𝑝 + 𝑞) + 𝑟)))
7270, 71syl5ibrcom 237 . . . . . . 7 ((((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)) ∧ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟)) → (𝑍 = ((𝑝 + 𝑞) + 𝑟) → 5 < 𝑍))
738, 11, 72syl2an 495 . . . . . 6 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (𝑍 = ((𝑝 + 𝑞) + 𝑟) → 5 < 𝑍))
7473rexlimdva 3133 . . . . 5 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟) → 5 < 𝑍))
7574adantl 473 . . . 4 ((𝑍 ∈ Odd ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) → (∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟) → 5 < 𝑍))
7675rexlimdvva 3140 . . 3 (𝑍 ∈ Odd → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟) → 5 < 𝑍))
7776imp 444 . 2 ((𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟)) → 5 < 𝑍)
781, 77sylbi 207 1 (𝑍 ∈ GoldbachOddW → 5 < 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1596  wcel 2103  wrex 3015   class class class wbr 4760  cfv 6001  (class class class)co 6765  cr 10048   + caddc 10052   < clt 10187  cle 10188  2c2 11183  4c4 11185  5c5 11186  6c6 11187  cz 11490  cuz 11800  cprime 15508   Odd codd 41965   GoldbachOddW cgbow 42061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-pre-sup 10127
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-2o 7681  df-er 7862  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-sup 8464  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-3 11193  df-4 11194  df-5 11195  df-6 11196  df-n0 11406  df-z 11491  df-uz 11801  df-rp 11947  df-seq 12917  df-exp 12976  df-cj 13959  df-re 13960  df-im 13961  df-sqrt 14095  df-abs 14096  df-dvds 15104  df-prm 15509  df-gbow 42064
This theorem is referenced by:  gbowge7  42078
  Copyright terms: Public domain W3C validator