Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gbowgt5 Structured version   Visualization version   GIF version

Theorem gbowgt5 43947
Description: Any weak odd Goldbach number is greater than 5. (Contributed by AV, 20-Jul-2020.)
Assertion
Ref Expression
gbowgt5 (𝑍 ∈ GoldbachOddW → 5 < 𝑍)

Proof of Theorem gbowgt5
Dummy variables 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isgbow 43937 . 2 (𝑍 ∈ GoldbachOddW ↔ (𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟)))
2 prmuz2 16040 . . . . . . . . 9 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
3 eluz2 12250 . . . . . . . . 9 (𝑝 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝))
42, 3sylib 220 . . . . . . . 8 (𝑝 ∈ ℙ → (2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝))
5 prmuz2 16040 . . . . . . . . 9 (𝑞 ∈ ℙ → 𝑞 ∈ (ℤ‘2))
6 eluz2 12250 . . . . . . . . 9 (𝑞 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞))
75, 6sylib 220 . . . . . . . 8 (𝑞 ∈ ℙ → (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞))
84, 7anim12i 614 . . . . . . 7 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → ((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)))
9 prmuz2 16040 . . . . . . . 8 (𝑟 ∈ ℙ → 𝑟 ∈ (ℤ‘2))
10 eluz2 12250 . . . . . . . 8 (𝑟 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟))
119, 10sylib 220 . . . . . . 7 (𝑟 ∈ ℙ → (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟))
12 zre 11986 . . . . . . . . . . . . . 14 (𝑝 ∈ ℤ → 𝑝 ∈ ℝ)
13123ad2ant2 1130 . . . . . . . . . . . . 13 ((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) → 𝑝 ∈ ℝ)
14 zre 11986 . . . . . . . . . . . . . 14 (𝑞 ∈ ℤ → 𝑞 ∈ ℝ)
15143ad2ant2 1130 . . . . . . . . . . . . 13 ((2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞) → 𝑞 ∈ ℝ)
1613, 15anim12i 614 . . . . . . . . . . . 12 (((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)) → (𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ))
17 2re 11712 . . . . . . . . . . . . 13 2 ∈ ℝ
1817, 17pm3.2i 473 . . . . . . . . . . . 12 (2 ∈ ℝ ∧ 2 ∈ ℝ)
1916, 18jctil 522 . . . . . . . . . . 11 (((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)) → ((2 ∈ ℝ ∧ 2 ∈ ℝ) ∧ (𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ)))
20 simp3 1134 . . . . . . . . . . . 12 ((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) → 2 ≤ 𝑝)
21 simp3 1134 . . . . . . . . . . . 12 ((2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞) → 2 ≤ 𝑞)
2220, 21anim12i 614 . . . . . . . . . . 11 (((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)) → (2 ≤ 𝑝 ∧ 2 ≤ 𝑞))
23 le2add 11122 . . . . . . . . . . 11 (((2 ∈ ℝ ∧ 2 ∈ ℝ) ∧ (𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ)) → ((2 ≤ 𝑝 ∧ 2 ≤ 𝑞) → (2 + 2) ≤ (𝑝 + 𝑞)))
2419, 22, 23sylc 65 . . . . . . . . . 10 (((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)) → (2 + 2) ≤ (𝑝 + 𝑞))
25 2p2e4 11773 . . . . . . . . . . . . . . . . 17 (2 + 2) = 4
2625breq1i 5073 . . . . . . . . . . . . . . . 16 ((2 + 2) ≤ (𝑝 + 𝑞) ↔ 4 ≤ (𝑝 + 𝑞))
27 zaddcl 12023 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (𝑝 + 𝑞) ∈ ℤ)
2827zred 12088 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (𝑝 + 𝑞) ∈ ℝ)
2928adantr 483 . . . . . . . . . . . . . . . . . . . . 21 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) → (𝑝 + 𝑞) ∈ ℝ)
30 zre 11986 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 ∈ ℤ → 𝑟 ∈ ℝ)
31303ad2ant2 1130 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 𝑟 ∈ ℝ)
3229, 31anim12i 614 . . . . . . . . . . . . . . . . . . . 20 ((((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) ∧ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟)) → ((𝑝 + 𝑞) ∈ ℝ ∧ 𝑟 ∈ ℝ))
33 4re 11722 . . . . . . . . . . . . . . . . . . . . 21 4 ∈ ℝ
3433, 17pm3.2i 473 . . . . . . . . . . . . . . . . . . . 20 (4 ∈ ℝ ∧ 2 ∈ ℝ)
3532, 34jctil 522 . . . . . . . . . . . . . . . . . . 19 ((((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) ∧ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟)) → ((4 ∈ ℝ ∧ 2 ∈ ℝ) ∧ ((𝑝 + 𝑞) ∈ ℝ ∧ 𝑟 ∈ ℝ)))
36 simpr 487 . . . . . . . . . . . . . . . . . . . 20 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) → 4 ≤ (𝑝 + 𝑞))
37 simp3 1134 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 2 ≤ 𝑟)
3836, 37anim12i 614 . . . . . . . . . . . . . . . . . . 19 ((((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) ∧ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟)) → (4 ≤ (𝑝 + 𝑞) ∧ 2 ≤ 𝑟))
39 le2add 11122 . . . . . . . . . . . . . . . . . . 19 (((4 ∈ ℝ ∧ 2 ∈ ℝ) ∧ ((𝑝 + 𝑞) ∈ ℝ ∧ 𝑟 ∈ ℝ)) → ((4 ≤ (𝑝 + 𝑞) ∧ 2 ≤ 𝑟) → (4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟)))
4035, 38, 39sylc 65 . . . . . . . . . . . . . . . . . 18 ((((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) ∧ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟)) → (4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟))
41 4p2e6 11791 . . . . . . . . . . . . . . . . . . . . . . . . 25 (4 + 2) = 6
4241breq1i 5073 . . . . . . . . . . . . . . . . . . . . . . . 24 ((4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟) ↔ 6 ≤ ((𝑝 + 𝑞) + 𝑟))
43 5lt6 11819 . . . . . . . . . . . . . . . . . . . . . . . . 25 5 < 6
44 5re 11725 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5 ∈ ℝ
4544a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → 5 ∈ ℝ)
46 6re 11728 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6 ∈ ℝ
4746a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → 6 ∈ ℝ)
4827adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → (𝑝 + 𝑞) ∈ ℤ)
49 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → 𝑟 ∈ ℤ)
5048, 49zaddcld 12092 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → ((𝑝 + 𝑞) + 𝑟) ∈ ℤ)
5150zred 12088 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → ((𝑝 + 𝑞) + 𝑟) ∈ ℝ)
52 ltletr 10732 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((5 ∈ ℝ ∧ 6 ∈ ℝ ∧ ((𝑝 + 𝑞) + 𝑟) ∈ ℝ) → ((5 < 6 ∧ 6 ≤ ((𝑝 + 𝑞) + 𝑟)) → 5 < ((𝑝 + 𝑞) + 𝑟)))
5345, 47, 51, 52syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → ((5 < 6 ∧ 6 ≤ ((𝑝 + 𝑞) + 𝑟)) → 5 < ((𝑝 + 𝑞) + 𝑟)))
5443, 53mpani 694 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → (6 ≤ ((𝑝 + 𝑞) + 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟)))
5542, 54syl5bi 244 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → ((4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟)))
5655expcom 416 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 ∈ ℤ → ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → ((4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟))))
57563ad2ant2 1130 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → ((4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟))))
5857com12 32 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → ((4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟))))
5958adantr 483 . . . . . . . . . . . . . . . . . . 19 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → ((4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟))))
6059imp 409 . . . . . . . . . . . . . . . . . 18 ((((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) ∧ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟)) → ((4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟)))
6140, 60mpd 15 . . . . . . . . . . . . . . . . 17 ((((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) ∧ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟)) → 5 < ((𝑝 + 𝑞) + 𝑟))
6261exp31 422 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (4 ≤ (𝑝 + 𝑞) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟))))
6326, 62syl5bi 244 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → ((2 + 2) ≤ (𝑝 + 𝑞) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟))))
6463expcom 416 . . . . . . . . . . . . . 14 (𝑞 ∈ ℤ → (𝑝 ∈ ℤ → ((2 + 2) ≤ (𝑝 + 𝑞) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟)))))
65643ad2ant2 1130 . . . . . . . . . . . . 13 ((2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞) → (𝑝 ∈ ℤ → ((2 + 2) ≤ (𝑝 + 𝑞) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟)))))
6665com12 32 . . . . . . . . . . . 12 (𝑝 ∈ ℤ → ((2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞) → ((2 + 2) ≤ (𝑝 + 𝑞) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟)))))
67663ad2ant2 1130 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) → ((2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞) → ((2 + 2) ≤ (𝑝 + 𝑞) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟)))))
6867imp 409 . . . . . . . . . 10 (((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)) → ((2 + 2) ≤ (𝑝 + 𝑞) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟))))
6924, 68mpd 15 . . . . . . . . 9 (((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟)))
7069imp 409 . . . . . . . 8 ((((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)) ∧ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟)) → 5 < ((𝑝 + 𝑞) + 𝑟))
71 breq2 5070 . . . . . . . 8 (𝑍 = ((𝑝 + 𝑞) + 𝑟) → (5 < 𝑍 ↔ 5 < ((𝑝 + 𝑞) + 𝑟)))
7270, 71syl5ibrcom 249 . . . . . . 7 ((((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)) ∧ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟)) → (𝑍 = ((𝑝 + 𝑞) + 𝑟) → 5 < 𝑍))
738, 11, 72syl2an 597 . . . . . 6 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (𝑍 = ((𝑝 + 𝑞) + 𝑟) → 5 < 𝑍))
7473rexlimdva 3284 . . . . 5 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟) → 5 < 𝑍))
7574adantl 484 . . . 4 ((𝑍 ∈ Odd ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) → (∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟) → 5 < 𝑍))
7675rexlimdvva 3294 . . 3 (𝑍 ∈ Odd → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟) → 5 < 𝑍))
7776imp 409 . 2 ((𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟)) → 5 < 𝑍)
781, 77sylbi 219 1 (𝑍 ∈ GoldbachOddW → 5 < 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wrex 3139   class class class wbr 5066  cfv 6355  (class class class)co 7156  cr 10536   + caddc 10540   < clt 10675  cle 10676  2c2 11693  4c4 11695  5c5 11696  6c6 11697  cz 11982  cuz 12244  cprime 16015   Odd codd 43810   GoldbachOddW cgbow 43931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-dvds 15608  df-prm 16016  df-gbow 43934
This theorem is referenced by:  gbowge7  43948
  Copyright terms: Public domain W3C validator