MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  7t7e49 Structured version   Visualization version   GIF version

Theorem 7t7e49 11482
Description: 7 times 7 equals 49. (Contributed by Mario Carneiro, 19-Apr-2015.)
Assertion
Ref Expression
7t7e49 (7 · 7) = 49

Proof of Theorem 7t7e49
StepHypRef Expression
1 7nn0 11158 . 2 7 ∈ ℕ0
2 6nn0 11157 . 2 6 ∈ ℕ0
3 df-7 10928 . 2 7 = (6 + 1)
4 7t6e42 11481 . 2 (7 · 6) = 42
5 4nn0 11155 . . 3 4 ∈ ℕ0
6 2nn0 11153 . . 3 2 ∈ ℕ0
7 eqid 2606 . . 3 42 = 42
8 7cn 10948 . . . 4 7 ∈ ℂ
9 2cn 10935 . . . 4 2 ∈ ℂ
10 7p2e9 11016 . . . 4 (7 + 2) = 9
118, 9, 10addcomli 10076 . . 3 (2 + 7) = 9
125, 6, 1, 7, 11decaddi 11408 . 2 (42 + 7) = 49
131, 2, 3, 4, 124t3lem 11460 1 (7 · 7) = 49
Colors of variables: wff setvar class
Syntax hints:   = wceq 1474  (class class class)co 6524   · cmul 9794  2c2 10914  4c4 10916  6c6 10918  7c7 10919  9c9 10921  cdc 11322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-resscn 9846  ax-1cn 9847  ax-icn 9848  ax-addcl 9849  ax-addrcl 9850  ax-mulcl 9851  ax-mulrcl 9852  ax-mulcom 9853  ax-addass 9854  ax-mulass 9855  ax-distr 9856  ax-i2m1 9857  ax-1ne0 9858  ax-1rid 9859  ax-rnegex 9860  ax-rrecex 9861  ax-cnre 9862  ax-pre-lttri 9863  ax-pre-lttrn 9864  ax-pre-ltadd 9865
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-reu 2899  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-iun 4448  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-riota 6486  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-om 6932  df-wrecs 7268  df-recs 7329  df-rdg 7367  df-er 7603  df-en 7816  df-dom 7817  df-sdom 7818  df-pnf 9929  df-mnf 9930  df-ltxr 9932  df-sub 10116  df-nn 10865  df-2 10923  df-3 10924  df-4 10925  df-5 10926  df-6 10927  df-7 10928  df-8 10929  df-9 10930  df-n0 11137  df-dec 11323
This theorem is referenced by:  631prm  15615  1259lem3  15621  2503lem2  15626  4001lem1  15629  log2ub  24390  bposlem8  24730  127prm  39855
  Copyright terms: Public domain W3C validator