MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ascldimulOLD Structured version   Visualization version   GIF version

Theorem ascldimulOLD 20117
Description: Obsolete version of ascldimul 20116 as of 5-Nov-2023. (Contributed by Mario Carneiro, 8-Mar-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
ascldimul.a 𝐴 = (algSc‘𝑊)
ascldimul.f 𝐹 = (Scalar‘𝑊)
ascldimul.k 𝐾 = (Base‘𝐹)
ascldimul.t × = (.r𝑊)
ascldimul.s · = (.r𝐹)
Assertion
Ref Expression
ascldimulOLD ((𝑊 ∈ AssAlg ∧ 𝑅𝐾𝑆𝐾) → (𝐴‘(𝑅 · 𝑆)) = ((𝐴𝑅) × (𝐴𝑆)))

Proof of Theorem ascldimulOLD
StepHypRef Expression
1 assaring 20093 . . . . . . 7 (𝑊 ∈ AssAlg → 𝑊 ∈ Ring)
2 eqid 2821 . . . . . . . . 9 (Base‘𝑊) = (Base‘𝑊)
3 eqid 2821 . . . . . . . . 9 (1r𝑊) = (1r𝑊)
42, 3ringidcl 19318 . . . . . . . 8 (𝑊 ∈ Ring → (1r𝑊) ∈ (Base‘𝑊))
51, 4syl 17 . . . . . . 7 (𝑊 ∈ AssAlg → (1r𝑊) ∈ (Base‘𝑊))
6 ascldimul.t . . . . . . . 8 × = (.r𝑊)
72, 6, 3ringlidm 19321 . . . . . . 7 ((𝑊 ∈ Ring ∧ (1r𝑊) ∈ (Base‘𝑊)) → ((1r𝑊) × (1r𝑊)) = (1r𝑊))
81, 5, 7syl2anc 586 . . . . . 6 (𝑊 ∈ AssAlg → ((1r𝑊) × (1r𝑊)) = (1r𝑊))
98oveq2d 7172 . . . . 5 (𝑊 ∈ AssAlg → (𝑆( ·𝑠𝑊)((1r𝑊) × (1r𝑊))) = (𝑆( ·𝑠𝑊)(1r𝑊)))
109oveq2d 7172 . . . 4 (𝑊 ∈ AssAlg → (𝑅( ·𝑠𝑊)(𝑆( ·𝑠𝑊)((1r𝑊) × (1r𝑊)))) = (𝑅( ·𝑠𝑊)(𝑆( ·𝑠𝑊)(1r𝑊))))
11103ad2ant1 1129 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑅𝐾𝑆𝐾) → (𝑅( ·𝑠𝑊)(𝑆( ·𝑠𝑊)((1r𝑊) × (1r𝑊)))) = (𝑅( ·𝑠𝑊)(𝑆( ·𝑠𝑊)(1r𝑊))))
12 simp1 1132 . . . . 5 ((𝑊 ∈ AssAlg ∧ 𝑅𝐾𝑆𝐾) → 𝑊 ∈ AssAlg)
13 simp2 1133 . . . . 5 ((𝑊 ∈ AssAlg ∧ 𝑅𝐾𝑆𝐾) → 𝑅𝐾)
1453ad2ant1 1129 . . . . 5 ((𝑊 ∈ AssAlg ∧ 𝑅𝐾𝑆𝐾) → (1r𝑊) ∈ (Base‘𝑊))
15 assalmod 20092 . . . . . . 7 (𝑊 ∈ AssAlg → 𝑊 ∈ LMod)
16153ad2ant1 1129 . . . . . 6 ((𝑊 ∈ AssAlg ∧ 𝑅𝐾𝑆𝐾) → 𝑊 ∈ LMod)
17 simp3 1134 . . . . . 6 ((𝑊 ∈ AssAlg ∧ 𝑅𝐾𝑆𝐾) → 𝑆𝐾)
18 ascldimul.f . . . . . . 7 𝐹 = (Scalar‘𝑊)
19 eqid 2821 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
20 ascldimul.k . . . . . . 7 𝐾 = (Base‘𝐹)
212, 18, 19, 20lmodvscl 19651 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑆𝐾 ∧ (1r𝑊) ∈ (Base‘𝑊)) → (𝑆( ·𝑠𝑊)(1r𝑊)) ∈ (Base‘𝑊))
2216, 17, 14, 21syl3anc 1367 . . . . 5 ((𝑊 ∈ AssAlg ∧ 𝑅𝐾𝑆𝐾) → (𝑆( ·𝑠𝑊)(1r𝑊)) ∈ (Base‘𝑊))
232, 18, 20, 19, 6assaass 20090 . . . . 5 ((𝑊 ∈ AssAlg ∧ (𝑅𝐾 ∧ (1r𝑊) ∈ (Base‘𝑊) ∧ (𝑆( ·𝑠𝑊)(1r𝑊)) ∈ (Base‘𝑊))) → ((𝑅( ·𝑠𝑊)(1r𝑊)) × (𝑆( ·𝑠𝑊)(1r𝑊))) = (𝑅( ·𝑠𝑊)((1r𝑊) × (𝑆( ·𝑠𝑊)(1r𝑊)))))
2412, 13, 14, 22, 23syl13anc 1368 . . . 4 ((𝑊 ∈ AssAlg ∧ 𝑅𝐾𝑆𝐾) → ((𝑅( ·𝑠𝑊)(1r𝑊)) × (𝑆( ·𝑠𝑊)(1r𝑊))) = (𝑅( ·𝑠𝑊)((1r𝑊) × (𝑆( ·𝑠𝑊)(1r𝑊)))))
252, 18, 20, 19, 6assaassr 20091 . . . . . 6 ((𝑊 ∈ AssAlg ∧ (𝑆𝐾 ∧ (1r𝑊) ∈ (Base‘𝑊) ∧ (1r𝑊) ∈ (Base‘𝑊))) → ((1r𝑊) × (𝑆( ·𝑠𝑊)(1r𝑊))) = (𝑆( ·𝑠𝑊)((1r𝑊) × (1r𝑊))))
2612, 17, 14, 14, 25syl13anc 1368 . . . . 5 ((𝑊 ∈ AssAlg ∧ 𝑅𝐾𝑆𝐾) → ((1r𝑊) × (𝑆( ·𝑠𝑊)(1r𝑊))) = (𝑆( ·𝑠𝑊)((1r𝑊) × (1r𝑊))))
2726oveq2d 7172 . . . 4 ((𝑊 ∈ AssAlg ∧ 𝑅𝐾𝑆𝐾) → (𝑅( ·𝑠𝑊)((1r𝑊) × (𝑆( ·𝑠𝑊)(1r𝑊)))) = (𝑅( ·𝑠𝑊)(𝑆( ·𝑠𝑊)((1r𝑊) × (1r𝑊)))))
2824, 27eqtrd 2856 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑅𝐾𝑆𝐾) → ((𝑅( ·𝑠𝑊)(1r𝑊)) × (𝑆( ·𝑠𝑊)(1r𝑊))) = (𝑅( ·𝑠𝑊)(𝑆( ·𝑠𝑊)((1r𝑊) × (1r𝑊)))))
29 ascldimul.s . . . . 5 · = (.r𝐹)
302, 18, 19, 20, 29lmodvsass 19659 . . . 4 ((𝑊 ∈ LMod ∧ (𝑅𝐾𝑆𝐾 ∧ (1r𝑊) ∈ (Base‘𝑊))) → ((𝑅 · 𝑆)( ·𝑠𝑊)(1r𝑊)) = (𝑅( ·𝑠𝑊)(𝑆( ·𝑠𝑊)(1r𝑊))))
3116, 13, 17, 14, 30syl13anc 1368 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑅𝐾𝑆𝐾) → ((𝑅 · 𝑆)( ·𝑠𝑊)(1r𝑊)) = (𝑅( ·𝑠𝑊)(𝑆( ·𝑠𝑊)(1r𝑊))))
3211, 28, 313eqtr4rd 2867 . 2 ((𝑊 ∈ AssAlg ∧ 𝑅𝐾𝑆𝐾) → ((𝑅 · 𝑆)( ·𝑠𝑊)(1r𝑊)) = ((𝑅( ·𝑠𝑊)(1r𝑊)) × (𝑆( ·𝑠𝑊)(1r𝑊))))
3318assasca 20094 . . . . 5 (𝑊 ∈ AssAlg → 𝐹 ∈ CRing)
34 crngring 19308 . . . . 5 (𝐹 ∈ CRing → 𝐹 ∈ Ring)
3533, 34syl 17 . . . 4 (𝑊 ∈ AssAlg → 𝐹 ∈ Ring)
3620, 29ringcl 19311 . . . 4 ((𝐹 ∈ Ring ∧ 𝑅𝐾𝑆𝐾) → (𝑅 · 𝑆) ∈ 𝐾)
3735, 36syl3an1 1159 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑅𝐾𝑆𝐾) → (𝑅 · 𝑆) ∈ 𝐾)
38 ascldimul.a . . . 4 𝐴 = (algSc‘𝑊)
3938, 18, 20, 19, 3asclval 20109 . . 3 ((𝑅 · 𝑆) ∈ 𝐾 → (𝐴‘(𝑅 · 𝑆)) = ((𝑅 · 𝑆)( ·𝑠𝑊)(1r𝑊)))
4037, 39syl 17 . 2 ((𝑊 ∈ AssAlg ∧ 𝑅𝐾𝑆𝐾) → (𝐴‘(𝑅 · 𝑆)) = ((𝑅 · 𝑆)( ·𝑠𝑊)(1r𝑊)))
4138, 18, 20, 19, 3asclval 20109 . . . 4 (𝑅𝐾 → (𝐴𝑅) = (𝑅( ·𝑠𝑊)(1r𝑊)))
4213, 41syl 17 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑅𝐾𝑆𝐾) → (𝐴𝑅) = (𝑅( ·𝑠𝑊)(1r𝑊)))
4338, 18, 20, 19, 3asclval 20109 . . . 4 (𝑆𝐾 → (𝐴𝑆) = (𝑆( ·𝑠𝑊)(1r𝑊)))
4417, 43syl 17 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑅𝐾𝑆𝐾) → (𝐴𝑆) = (𝑆( ·𝑠𝑊)(1r𝑊)))
4542, 44oveq12d 7174 . 2 ((𝑊 ∈ AssAlg ∧ 𝑅𝐾𝑆𝐾) → ((𝐴𝑅) × (𝐴𝑆)) = ((𝑅( ·𝑠𝑊)(1r𝑊)) × (𝑆( ·𝑠𝑊)(1r𝑊))))
4632, 40, 453eqtr4d 2866 1 ((𝑊 ∈ AssAlg ∧ 𝑅𝐾𝑆𝐾) → (𝐴‘(𝑅 · 𝑆)) = ((𝐴𝑅) × (𝐴𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1537  wcel 2114  cfv 6355  (class class class)co 7156  Basecbs 16483  .rcmulr 16566  Scalarcsca 16568   ·𝑠 cvsca 16569  1rcur 19251  Ringcrg 19297  CRingccrg 19298  LModclmod 19634  AssAlgcasa 20082  algSccascl 20084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-plusg 16578  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-lmod 19636  df-assa 20085  df-ascl 20087
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator