MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucvgb Structured version   Visualization version   GIF version

Theorem caucvgb 15036
Description: A function is convergent if and only if it is Cauchy. Theorem 12-5.3 of [Gleason] p. 180. (Contributed by Mario Carneiro, 15-Feb-2014.)
Hypothesis
Ref Expression
caucvgb.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
caucvgb ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
Distinct variable groups:   𝑗,𝑘,𝑥,𝐹   𝑗,𝑀,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥   𝑘,𝑉
Allowed substitution hints:   𝑉(𝑥,𝑗)

Proof of Theorem caucvgb
Dummy variables 𝑖 𝑚 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldm2g 5768 . . . 4 (𝐹 ∈ dom ⇝ → (𝐹 ∈ dom ⇝ ↔ ∃𝑚𝐹, 𝑚⟩ ∈ ⇝ ))
21ibi 269 . . 3 (𝐹 ∈ dom ⇝ → ∃𝑚𝐹, 𝑚⟩ ∈ ⇝ )
3 df-br 5067 . . . . 5 (𝐹𝑚 ↔ ⟨𝐹, 𝑚⟩ ∈ ⇝ )
4 caucvgb.1 . . . . . . . 8 𝑍 = (ℤ𝑀)
5 simpll 765 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝐹𝑚) → 𝑀 ∈ ℤ)
6 1rp 12394 . . . . . . . . 9 1 ∈ ℝ+
76a1i 11 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝐹𝑚) → 1 ∈ ℝ+)
8 eqidd 2822 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝐹𝑚) ∧ 𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
9 simpr 487 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝐹𝑚) → 𝐹𝑚)
104, 5, 7, 8, 9climi 14867 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝐹𝑚) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑚)) < 1))
11 simpl 485 . . . . . . . . 9 (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑚)) < 1) → (𝐹𝑘) ∈ ℂ)
1211ralimi 3160 . . . . . . . 8 (∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑚)) < 1) → ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)
1312reximi 3243 . . . . . . 7 (∃𝑛𝑍𝑘 ∈ (ℤ𝑛)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝑚)) < 1) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)
1410, 13syl 17 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ 𝐹𝑚) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)
1514ex 415 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹𝑚 → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ))
163, 15syl5bir 245 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (⟨𝐹, 𝑚⟩ ∈ ⇝ → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ))
1716exlimdv 1934 . . 3 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (∃𝑚𝐹, 𝑚⟩ ∈ ⇝ → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ))
182, 17syl5 34 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹 ∈ dom ⇝ → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ))
19 fveq2 6670 . . . . . . 7 (𝑗 = 𝑛 → (ℤ𝑗) = (ℤ𝑛))
2019raleqdv 3415 . . . . . 6 (𝑗 = 𝑛 → (∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ ↔ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ))
2120cbvrexvw 3450 . . . . 5 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ ↔ ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)
2221a1i 11 . . . 4 (𝑥 = 1 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ ↔ ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ))
23 simpl 485 . . . . . . 7 (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (𝐹𝑘) ∈ ℂ)
2423ralimi 3160 . . . . . 6 (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
2524reximi 3243 . . . . 5 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
2625ralimi 3160 . . . 4 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
276a1i 11 . . . 4 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → 1 ∈ ℝ+)
2822, 26, 27rspcdva 3625 . . 3 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)
2928a1i 11 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ))
30 eluzelz 12254 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
3130, 4eleq2s 2931 . . . . . . . . 9 (𝑛𝑍𝑛 ∈ ℤ)
32 eqid 2821 . . . . . . . . . 10 (ℤ𝑛) = (ℤ𝑛)
3332climcau 15027 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
3431, 33sylan 582 . . . . . . . 8 ((𝑛𝑍𝐹 ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
3532r19.29uz 14710 . . . . . . . . . 10 ((∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ ∧ ∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
3635ex 415 . . . . . . . . 9 (∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ → (∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → ∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
3736ralimdv 3178 . . . . . . . 8 (∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ → (∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
3834, 37mpan9 509 . . . . . . 7 (((𝑛𝑍𝐹 ∈ dom ⇝ ) ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ) → ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
3938an32s 650 . . . . . 6 (((𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ) ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
4039adantll 712 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
41 simplrr 776 . . . . . . . 8 (((𝐹𝑉 ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)) → ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)
42 fveq2 6670 . . . . . . . . . 10 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
4342eleq1d 2897 . . . . . . . . 9 (𝑘 = 𝑚 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑚) ∈ ℂ))
4443rspccva 3622 . . . . . . . 8 ((∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ ∧ 𝑚 ∈ (ℤ𝑛)) → (𝐹𝑚) ∈ ℂ)
4541, 44sylan 582 . . . . . . 7 ((((𝐹𝑉 ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝐹𝑚) ∈ ℂ)
46 simpr 487 . . . . . . . . . . . . 13 (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
4746ralimi 3160 . . . . . . . . . . . 12 (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
4842fvoveq1d 7178 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → (abs‘((𝐹𝑘) − (𝐹𝑗))) = (abs‘((𝐹𝑚) − (𝐹𝑗))))
4948breq1d 5076 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 ↔ (abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥))
5049cbvralvw 3449 . . . . . . . . . . . 12 (∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 ↔ ∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥)
5147, 50sylib 220 . . . . . . . . . . 11 (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥)
5251reximi 3243 . . . . . . . . . 10 (∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑗 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥)
5352ralimi 3160 . . . . . . . . 9 (∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥)
5453adantl 484 . . . . . . . 8 (((𝐹𝑉 ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)) → ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥)
55 fveq2 6670 . . . . . . . . . . . 12 (𝑗 = 𝑖 → (ℤ𝑗) = (ℤ𝑖))
56 fveq2 6670 . . . . . . . . . . . . . . 15 (𝑗 = 𝑖 → (𝐹𝑗) = (𝐹𝑖))
5756oveq2d 7172 . . . . . . . . . . . . . 14 (𝑗 = 𝑖 → ((𝐹𝑚) − (𝐹𝑗)) = ((𝐹𝑚) − (𝐹𝑖)))
5857fveq2d 6674 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (abs‘((𝐹𝑚) − (𝐹𝑗))) = (abs‘((𝐹𝑚) − (𝐹𝑖))))
5958breq1d 5076 . . . . . . . . . . . 12 (𝑗 = 𝑖 → ((abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥 ↔ (abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑥))
6055, 59raleqbidv 3401 . . . . . . . . . . 11 (𝑗 = 𝑖 → (∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥 ↔ ∀𝑚 ∈ (ℤ𝑖)(abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑥))
6160cbvrexvw 3450 . . . . . . . . . 10 (∃𝑗 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥 ↔ ∃𝑖 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑖)(abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑥)
62 breq2 5070 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑥 ↔ (abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑦))
6362rexralbidv 3301 . . . . . . . . . 10 (𝑥 = 𝑦 → (∃𝑖 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑖)(abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑥 ↔ ∃𝑖 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑖)(abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑦))
6461, 63syl5bb 285 . . . . . . . . 9 (𝑥 = 𝑦 → (∃𝑗 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥 ↔ ∃𝑖 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑖)(abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑦))
6564cbvralvw 3449 . . . . . . . 8 (∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑗)(abs‘((𝐹𝑚) − (𝐹𝑗))) < 𝑥 ↔ ∀𝑦 ∈ ℝ+𝑖 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑖)(abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑦)
6654, 65sylib 220 . . . . . . 7 (((𝐹𝑉 ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)) → ∀𝑦 ∈ ℝ+𝑖 ∈ (ℤ𝑛)∀𝑚 ∈ (ℤ𝑖)(abs‘((𝐹𝑚) − (𝐹𝑖))) < 𝑦)
67 simpll 765 . . . . . . 7 (((𝐹𝑉 ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)) → 𝐹𝑉)
6832, 45, 66, 67caucvg 15035 . . . . . 6 (((𝐹𝑉 ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)) → 𝐹 ∈ dom ⇝ )
6968adantlll 716 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)) → 𝐹 ∈ dom ⇝ )
7040, 69impbida 799 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
714, 32cau4 14716 . . . . 5 (𝑛𝑍 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
7271ad2antrl 726 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
7370, 72bitr4d 284 . . 3 (((𝑀 ∈ ℤ ∧ 𝐹𝑉) ∧ (𝑛𝑍 ∧ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ)) → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
7473rexlimdvaa 3285 . 2 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (∃𝑛𝑍𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ ℂ → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))))
7518, 29, 74pm5.21ndd 383 1 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹 ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wex 1780  wcel 2114  wral 3138  wrex 3139  cop 4573   class class class wbr 5066  dom cdm 5555  cfv 6355  (class class class)co 7156  cc 10535  1c1 10538   < clt 10675  cmin 10870  cz 11982  cuz 12244  +crp 12390  abscabs 14593  cli 14841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-ico 12745  df-fl 13163  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846
This theorem is referenced by:  serf0  15037
  Copyright terms: Public domain W3C validator