MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucvg Structured version   Visualization version   GIF version

Theorem caucvg 14604
Description: A Cauchy sequence of complex numbers converges to a complex number. Theorem 12-5.3 of [Gleason] p. 180 (sufficiency part). (Contributed by NM, 20-Dec-2006.) (Proof shortened by Mario Carneiro, 15-Feb-2014.) (Revised by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
caucvg.1 𝑍 = (ℤ𝑀)
caucvg.2 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
caucvg.3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
caucvg.4 (𝜑𝐹𝑉)
Assertion
Ref Expression
caucvg (𝜑𝐹 ∈ dom ⇝ )
Distinct variable groups:   𝑗,𝑘,𝑥,𝐹   𝑗,𝑀,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝑉(𝑥,𝑗,𝑘)

Proof of Theorem caucvg
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6348 . . . . . 6 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
21cbvmptv 4898 . . . . 5 (𝑘𝑍 ↦ (𝐹𝑘)) = (𝑛𝑍 ↦ (𝐹𝑛))
3 caucvg.1 . . . . . . . . . 10 𝑍 = (ℤ𝑀)
4 uzssz 11895 . . . . . . . . . 10 (ℤ𝑀) ⊆ ℤ
53, 4eqsstri 3772 . . . . . . . . 9 𝑍 ⊆ ℤ
6 zssre 11572 . . . . . . . . 9 ℤ ⊆ ℝ
75, 6sstri 3749 . . . . . . . 8 𝑍 ⊆ ℝ
87a1i 11 . . . . . . 7 (𝜑𝑍 ⊆ ℝ)
9 caucvg.2 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
102eqcomi 2765 . . . . . . . 8 (𝑛𝑍 ↦ (𝐹𝑛)) = (𝑘𝑍 ↦ (𝐹𝑘))
119, 10fmptd 6544 . . . . . . 7 (𝜑 → (𝑛𝑍 ↦ (𝐹𝑛)):𝑍⟶ℂ)
12 1rp 12025 . . . . . . . . . . 11 1 ∈ ℝ+
1312ne0ii 4062 . . . . . . . . . 10 + ≠ ∅
14 caucvg.3 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
15 r19.2z 4200 . . . . . . . . . 10 ((ℝ+ ≠ ∅ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
1613, 14, 15sylancr 698 . . . . . . . . 9 (𝜑 → ∃𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
17 eluzel2 11880 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
1817, 3eleq2s 2853 . . . . . . . . . . . 12 (𝑗𝑍𝑀 ∈ ℤ)
1918a1d 25 . . . . . . . . . . 11 (𝑗𝑍 → (∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥𝑀 ∈ ℤ))
2019rexlimiv 3161 . . . . . . . . . 10 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥𝑀 ∈ ℤ)
2120rexlimivw 3163 . . . . . . . . 9 (∃𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥𝑀 ∈ ℤ)
2216, 21syl 17 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
233uzsup 12852 . . . . . . . 8 (𝑀 ∈ ℤ → sup(𝑍, ℝ*, < ) = +∞)
2422, 23syl 17 . . . . . . 7 (𝜑 → sup(𝑍, ℝ*, < ) = +∞)
255sseli 3736 . . . . . . . . . . . . . . . 16 (𝑗𝑍𝑗 ∈ ℤ)
265sseli 3736 . . . . . . . . . . . . . . . 16 (𝑘𝑍𝑘 ∈ ℤ)
27 eluz 11889 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (ℤ𝑗) ↔ 𝑗𝑘))
2825, 26, 27syl2an 495 . . . . . . . . . . . . . . 15 ((𝑗𝑍𝑘𝑍) → (𝑘 ∈ (ℤ𝑗) ↔ 𝑗𝑘))
2928biimprd 238 . . . . . . . . . . . . . 14 ((𝑗𝑍𝑘𝑍) → (𝑗𝑘𝑘 ∈ (ℤ𝑗)))
30 fveq2 6348 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
31 eqid 2756 . . . . . . . . . . . . . . . . . . 19 (𝑛𝑍 ↦ (𝐹𝑛)) = (𝑛𝑍 ↦ (𝐹𝑛))
32 fvex 6358 . . . . . . . . . . . . . . . . . . 19 (𝐹𝑛) ∈ V
3330, 31, 32fvmpt3i 6445 . . . . . . . . . . . . . . . . . 18 (𝑘𝑍 → ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) = (𝐹𝑘))
34 fveq2 6348 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑗 → (𝐹𝑛) = (𝐹𝑗))
3534, 31, 32fvmpt3i 6445 . . . . . . . . . . . . . . . . . 18 (𝑗𝑍 → ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗) = (𝐹𝑗))
3633, 35oveqan12rd 6829 . . . . . . . . . . . . . . . . 17 ((𝑗𝑍𝑘𝑍) → (((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗)) = ((𝐹𝑘) − (𝐹𝑗)))
3736fveq2d 6352 . . . . . . . . . . . . . . . 16 ((𝑗𝑍𝑘𝑍) → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) = (abs‘((𝐹𝑘) − (𝐹𝑗))))
3837breq1d 4810 . . . . . . . . . . . . . . 15 ((𝑗𝑍𝑘𝑍) → ((abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥 ↔ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
3938biimprd 238 . . . . . . . . . . . . . 14 ((𝑗𝑍𝑘𝑍) → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥))
4029, 39imim12d 81 . . . . . . . . . . . . 13 ((𝑗𝑍𝑘𝑍) → ((𝑘 ∈ (ℤ𝑗) → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (𝑗𝑘 → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥)))
4140ex 449 . . . . . . . . . . . 12 (𝑗𝑍 → (𝑘𝑍 → ((𝑘 ∈ (ℤ𝑗) → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (𝑗𝑘 → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥))))
4241com23 86 . . . . . . . . . . 11 (𝑗𝑍 → ((𝑘 ∈ (ℤ𝑗) → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (𝑘𝑍 → (𝑗𝑘 → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥))))
4342ralimdv2 3095 . . . . . . . . . 10 (𝑗𝑍 → (∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → ∀𝑘𝑍 (𝑗𝑘 → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥)))
4443reximia 3143 . . . . . . . . 9 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → ∃𝑗𝑍𝑘𝑍 (𝑗𝑘 → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥))
4544ralimi 3086 . . . . . . . 8 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘𝑍 (𝑗𝑘 → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥))
4614, 45syl 17 . . . . . . 7 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘𝑍 (𝑗𝑘 → (abs‘(((𝑛𝑍 ↦ (𝐹𝑛))‘𝑘) − ((𝑛𝑍 ↦ (𝐹𝑛))‘𝑗))) < 𝑥))
478, 11, 24, 46caucvgr 14601 . . . . . 6 (𝜑 → (𝑛𝑍 ↦ (𝐹𝑛)) ∈ dom ⇝𝑟 )
4811, 24rlimdm 14477 . . . . . 6 (𝜑 → ((𝑛𝑍 ↦ (𝐹𝑛)) ∈ dom ⇝𝑟 ↔ (𝑛𝑍 ↦ (𝐹𝑛)) ⇝𝑟 ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛)))))
4947, 48mpbid 222 . . . . 5 (𝜑 → (𝑛𝑍 ↦ (𝐹𝑛)) ⇝𝑟 ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛))))
502, 49syl5eqbr 4835 . . . 4 (𝜑 → (𝑘𝑍 ↦ (𝐹𝑘)) ⇝𝑟 ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛))))
51 eqid 2756 . . . . . 6 (𝑘𝑍 ↦ (𝐹𝑘)) = (𝑘𝑍 ↦ (𝐹𝑘))
529, 51fmptd 6544 . . . . 5 (𝜑 → (𝑘𝑍 ↦ (𝐹𝑘)):𝑍⟶ℂ)
533, 22, 52rlimclim 14472 . . . 4 (𝜑 → ((𝑘𝑍 ↦ (𝐹𝑘)) ⇝𝑟 ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛))) ↔ (𝑘𝑍 ↦ (𝐹𝑘)) ⇝ ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛)))))
5450, 53mpbid 222 . . 3 (𝜑 → (𝑘𝑍 ↦ (𝐹𝑘)) ⇝ ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛))))
55 caucvg.4 . . . 4 (𝜑𝐹𝑉)
563, 51climmpt 14497 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹 ⇝ ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛))) ↔ (𝑘𝑍 ↦ (𝐹𝑘)) ⇝ ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛)))))
5722, 55, 56syl2anc 696 . . 3 (𝜑 → (𝐹 ⇝ ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛))) ↔ (𝑘𝑍 ↦ (𝐹𝑘)) ⇝ ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛)))))
5854, 57mpbird 247 . 2 (𝜑𝐹 ⇝ ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛))))
59 climrel 14418 . . 3 Rel ⇝
6059releldmi 5513 . 2 (𝐹 ⇝ ( ⇝𝑟 ‘(𝑛𝑍 ↦ (𝐹𝑛))) → 𝐹 ∈ dom ⇝ )
6158, 60syl 17 1 (𝜑𝐹 ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1628  wcel 2135  wne 2928  wral 3046  wrex 3047  wss 3711  c0 4054   class class class wbr 4800  cmpt 4877  dom cdm 5262  cfv 6045  (class class class)co 6809  supcsup 8507  cc 10122  cr 10123  1c1 10125  +∞cpnf 10259  *cxr 10261   < clt 10262  cle 10263  cmin 10454  cz 11565  cuz 11875  +crp 12021  abscabs 14169  cli 14410  𝑟 crli 14411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-rep 4919  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-cnex 10180  ax-resscn 10181  ax-1cn 10182  ax-icn 10183  ax-addcl 10184  ax-addrcl 10185  ax-mulcl 10186  ax-mulrcl 10187  ax-mulcom 10188  ax-addass 10189  ax-mulass 10190  ax-distr 10191  ax-i2m1 10192  ax-1ne0 10193  ax-1rid 10194  ax-rnegex 10195  ax-rrecex 10196  ax-cnre 10197  ax-pre-lttri 10198  ax-pre-lttrn 10199  ax-pre-ltadd 10200  ax-pre-mulgt0 10201  ax-pre-sup 10202  ax-addf 10203  ax-mulf 10204
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-nel 3032  df-ral 3051  df-rex 3052  df-reu 3053  df-rmo 3054  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-pss 3727  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4585  df-iun 4670  df-br 4801  df-opab 4861  df-mpt 4878  df-tr 4901  df-id 5170  df-eprel 5175  df-po 5183  df-so 5184  df-fr 5221  df-we 5223  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-pred 5837  df-ord 5883  df-on 5884  df-lim 5885  df-suc 5886  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-riota 6770  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-om 7227  df-2nd 7330  df-wrecs 7572  df-recs 7633  df-rdg 7671  df-er 7907  df-pm 8022  df-en 8118  df-dom 8119  df-sdom 8120  df-sup 8509  df-inf 8510  df-pnf 10264  df-mnf 10265  df-xr 10266  df-ltxr 10267  df-le 10268  df-sub 10456  df-neg 10457  df-div 10873  df-nn 11209  df-2 11267  df-3 11268  df-n0 11481  df-z 11566  df-uz 11876  df-rp 12022  df-ico 12370  df-fl 12783  df-seq 12992  df-exp 13051  df-cj 14034  df-re 14035  df-im 14036  df-sqrt 14170  df-abs 14171  df-limsup 14397  df-clim 14414  df-rlim 14415
This theorem is referenced by:  caucvgb  14605  cvgcmpce  14745  ulmcau  24344  dchrisumlem3  25375  rrncmslem  33940
  Copyright terms: Public domain W3C validator