![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > chrcong | Structured version Visualization version GIF version |
Description: If two integers are congruent relative to the ring characteristic, their images in the ring are the same. (Contributed by Mario Carneiro, 24-Sep-2015.) |
Ref | Expression |
---|---|
chrcl.c | ⊢ 𝐶 = (chr‘𝑅) |
chrid.l | ⊢ 𝐿 = (ℤRHom‘𝑅) |
chrid.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
chrcong | ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐶 ∥ (𝑀 − 𝑁) ↔ (𝐿‘𝑀) = (𝐿‘𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2651 | . . . . 5 ⊢ (od‘𝑅) = (od‘𝑅) | |
2 | eqid 2651 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
3 | chrcl.c | . . . . 5 ⊢ 𝐶 = (chr‘𝑅) | |
4 | 1, 2, 3 | chrval 19921 | . . . 4 ⊢ ((od‘𝑅)‘(1r‘𝑅)) = 𝐶 |
5 | 4 | breq1i 4692 | . . 3 ⊢ (((od‘𝑅)‘(1r‘𝑅)) ∥ (𝑀 − 𝑁) ↔ 𝐶 ∥ (𝑀 − 𝑁)) |
6 | ringgrp 18598 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
7 | 6 | 3ad2ant1 1102 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑅 ∈ Grp) |
8 | eqid 2651 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
9 | 8, 2 | ringidcl 18614 | . . . . 5 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
10 | 9 | 3ad2ant1 1102 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1r‘𝑅) ∈ (Base‘𝑅)) |
11 | simp2 1082 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ) | |
12 | simp3 1083 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
13 | eqid 2651 | . . . . 5 ⊢ (.g‘𝑅) = (.g‘𝑅) | |
14 | chrid.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
15 | 8, 1, 13, 14 | odcong 18014 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ (1r‘𝑅) ∈ (Base‘𝑅) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (((od‘𝑅)‘(1r‘𝑅)) ∥ (𝑀 − 𝑁) ↔ (𝑀(.g‘𝑅)(1r‘𝑅)) = (𝑁(.g‘𝑅)(1r‘𝑅)))) |
16 | 7, 10, 11, 12, 15 | syl112anc 1370 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((od‘𝑅)‘(1r‘𝑅)) ∥ (𝑀 − 𝑁) ↔ (𝑀(.g‘𝑅)(1r‘𝑅)) = (𝑁(.g‘𝑅)(1r‘𝑅)))) |
17 | 5, 16 | syl5bbr 274 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐶 ∥ (𝑀 − 𝑁) ↔ (𝑀(.g‘𝑅)(1r‘𝑅)) = (𝑁(.g‘𝑅)(1r‘𝑅)))) |
18 | chrid.l | . . . . 5 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
19 | 18, 13, 2 | zrhmulg 19906 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ) → (𝐿‘𝑀) = (𝑀(.g‘𝑅)(1r‘𝑅))) |
20 | 19 | 3adant3 1101 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐿‘𝑀) = (𝑀(.g‘𝑅)(1r‘𝑅))) |
21 | 18, 13, 2 | zrhmulg 19906 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → (𝐿‘𝑁) = (𝑁(.g‘𝑅)(1r‘𝑅))) |
22 | 21 | 3adant2 1100 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐿‘𝑁) = (𝑁(.g‘𝑅)(1r‘𝑅))) |
23 | 20, 22 | eqeq12d 2666 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐿‘𝑀) = (𝐿‘𝑁) ↔ (𝑀(.g‘𝑅)(1r‘𝑅)) = (𝑁(.g‘𝑅)(1r‘𝑅)))) |
24 | 17, 23 | bitr4d 271 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐶 ∥ (𝑀 − 𝑁) ↔ (𝐿‘𝑀) = (𝐿‘𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 class class class wbr 4685 ‘cfv 5926 (class class class)co 6690 − cmin 10304 ℤcz 11415 ∥ cdvds 15027 Basecbs 15904 0gc0g 16147 Grpcgrp 17469 .gcmg 17587 odcod 17990 1rcur 18547 Ringcrg 18593 ℤRHomczrh 19896 chrcchr 19898 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 ax-addf 10053 ax-mulf 10054 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-sup 8389 df-inf 8390 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-rp 11871 df-fz 12365 df-fl 12633 df-mod 12709 df-seq 12842 df-exp 12901 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-dvds 15028 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-starv 16003 df-tset 16007 df-ple 16008 df-ds 16011 df-unif 16012 df-0g 16149 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-mhm 17382 df-grp 17472 df-minusg 17473 df-sbg 17474 df-mulg 17588 df-subg 17638 df-ghm 17705 df-od 17994 df-cmn 18241 df-mgp 18536 df-ur 18548 df-ring 18595 df-cring 18596 df-rnghom 18763 df-subrg 18826 df-cnfld 19795 df-zring 19867 df-zrh 19900 df-chr 19902 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |