Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  chrcong Structured version   Visualization version   GIF version

Theorem chrcong 19925
 Description: If two integers are congruent relative to the ring characteristic, their images in the ring are the same. (Contributed by Mario Carneiro, 24-Sep-2015.)
Hypotheses
Ref Expression
chrcl.c 𝐶 = (chr‘𝑅)
chrid.l 𝐿 = (ℤRHom‘𝑅)
chrid.z 0 = (0g𝑅)
Assertion
Ref Expression
chrcong ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐶 ∥ (𝑀𝑁) ↔ (𝐿𝑀) = (𝐿𝑁)))

Proof of Theorem chrcong
StepHypRef Expression
1 eqid 2651 . . . . 5 (od‘𝑅) = (od‘𝑅)
2 eqid 2651 . . . . 5 (1r𝑅) = (1r𝑅)
3 chrcl.c . . . . 5 𝐶 = (chr‘𝑅)
41, 2, 3chrval 19921 . . . 4 ((od‘𝑅)‘(1r𝑅)) = 𝐶
54breq1i 4692 . . 3 (((od‘𝑅)‘(1r𝑅)) ∥ (𝑀𝑁) ↔ 𝐶 ∥ (𝑀𝑁))
6 ringgrp 18598 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
763ad2ant1 1102 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑅 ∈ Grp)
8 eqid 2651 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
98, 2ringidcl 18614 . . . . 5 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
1093ad2ant1 1102 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1r𝑅) ∈ (Base‘𝑅))
11 simp2 1082 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ)
12 simp3 1083 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
13 eqid 2651 . . . . 5 (.g𝑅) = (.g𝑅)
14 chrid.z . . . . 5 0 = (0g𝑅)
158, 1, 13, 14odcong 18014 . . . 4 ((𝑅 ∈ Grp ∧ (1r𝑅) ∈ (Base‘𝑅) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (((od‘𝑅)‘(1r𝑅)) ∥ (𝑀𝑁) ↔ (𝑀(.g𝑅)(1r𝑅)) = (𝑁(.g𝑅)(1r𝑅))))
167, 10, 11, 12, 15syl112anc 1370 . . 3 ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((od‘𝑅)‘(1r𝑅)) ∥ (𝑀𝑁) ↔ (𝑀(.g𝑅)(1r𝑅)) = (𝑁(.g𝑅)(1r𝑅))))
175, 16syl5bbr 274 . 2 ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐶 ∥ (𝑀𝑁) ↔ (𝑀(.g𝑅)(1r𝑅)) = (𝑁(.g𝑅)(1r𝑅))))
18 chrid.l . . . . 5 𝐿 = (ℤRHom‘𝑅)
1918, 13, 2zrhmulg 19906 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ) → (𝐿𝑀) = (𝑀(.g𝑅)(1r𝑅)))
20193adant3 1101 . . 3 ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐿𝑀) = (𝑀(.g𝑅)(1r𝑅)))
2118, 13, 2zrhmulg 19906 . . . 4 ((𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ) → (𝐿𝑁) = (𝑁(.g𝑅)(1r𝑅)))
22213adant2 1100 . . 3 ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐿𝑁) = (𝑁(.g𝑅)(1r𝑅)))
2320, 22eqeq12d 2666 . 2 ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐿𝑀) = (𝐿𝑁) ↔ (𝑀(.g𝑅)(1r𝑅)) = (𝑁(.g𝑅)(1r𝑅))))
2417, 23bitr4d 271 1 ((𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐶 ∥ (𝑀𝑁) ↔ (𝐿𝑀) = (𝐿𝑁)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030   class class class wbr 4685  ‘cfv 5926  (class class class)co 6690   − cmin 10304  ℤcz 11415   ∥ cdvds 15027  Basecbs 15904  0gc0g 16147  Grpcgrp 17469  .gcmg 17587  odcod 17990  1rcur 18547  Ringcrg 18593  ℤRHomczrh 19896  chrcchr 19898 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-rp 11871  df-fz 12365  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mulg 17588  df-subg 17638  df-ghm 17705  df-od 17994  df-cmn 18241  df-mgp 18536  df-ur 18548  df-ring 18595  df-cring 18596  df-rnghom 18763  df-subrg 18826  df-cnfld 19795  df-zring 19867  df-zrh 19900  df-chr 19902 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator