HomeHome Metamath Proof Explorer
Theorem List (p. 207 of 425)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-26947)
  Hilbert Space Explorer  Hilbert Space Explorer
(26948-28472)
  Users' Mathboxes  Users' Mathboxes
(28473-42426)
 

Theorem List for Metamath Proof Explorer - 20601-20700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremopncldf1 20601* A bijection useful for converting statements about open sets to statements about closed sets and vice versa. (Contributed by Jeff Hankins, 27-Aug-2009.) (Proof shortened by Mario Carneiro, 1-Sep-2015.)
𝑋 = 𝐽    &   𝐹 = (𝑢𝐽 ↦ (𝑋𝑢))       (𝐽 ∈ Top → (𝐹:𝐽1-1-onto→(Clsd‘𝐽) ∧ 𝐹 = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥))))
 
Theoremopncldf2 20602* The values of the open-closed bijection. (Contributed by Jeff Hankins, 27-Aug-2009.) (Proof shortened by Mario Carneiro, 1-Sep-2015.)
𝑋 = 𝐽    &   𝐹 = (𝑢𝐽 ↦ (𝑋𝑢))       ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐹𝐴) = (𝑋𝐴))
 
Theoremopncldf3 20603* The values of the converse/inverse of the open-closed bijection. (Contributed by Jeff Hankins, 27-Aug-2009.) (Proof shortened by Mario Carneiro, 1-Sep-2015.)
𝑋 = 𝐽    &   𝐹 = (𝑢𝐽 ↦ (𝑋𝑢))       (𝐵 ∈ (Clsd‘𝐽) → (𝐹𝐵) = (𝑋𝐵))
 
Theoremisclo 20604* A set 𝐴 is clopen iff for every point 𝑥 in the space there is a neighborhood 𝑦 such that all the points in 𝑦 are in 𝐴 iff 𝑥 is. (Contributed by Mario Carneiro, 10-Mar-2015.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (𝐽 ∩ (Clsd‘𝐽)) ↔ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑥𝐴𝑧𝐴))))
 
Theoremisclo2 20605* A set 𝐴 is clopen iff for every point 𝑥 in the space there is a neighborhood 𝑦 of 𝑥 which is either disjoint from 𝐴 or contained in 𝐴. (Contributed by Mario Carneiro, 7-Jul-2015.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐴 ∈ (𝐽 ∩ (Clsd‘𝐽)) ↔ ∀𝑥𝑋𝑦𝐽 (𝑥𝑦 ∧ ∀𝑧𝑦 (𝑧𝐴𝑦𝐴))))
 
Theoremdiscld 20606 The open sets of a discrete topology are closed and its closed sets are open. (Contributed by FL, 7-Jun-2007.) (Revised by Mario Carneiro, 7-Apr-2015.)
(𝐴𝑉 → (Clsd‘𝒫 𝐴) = 𝒫 𝐴)
 
Theoremsn0cld 20607 The closed sets of the topology {∅}. (Contributed by FL, 5-Jan-2009.)
(Clsd‘{∅}) = {∅}
 
Theoremindiscld 20608 The closed sets of an indiscrete topology. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 14-Aug-2015.)
(Clsd‘{∅, 𝐴}) = {∅, 𝐴}
 
Theoremmretopd 20609* A Moore collection which is closed under finite unions called topological; such a collection is the closed sets of a canonically associated topology. (Contributed by Stefan O'Rear, 1-Feb-2015.)
(𝜑𝑀 ∈ (Moore‘𝐵))    &   (𝜑 → ∅ ∈ 𝑀)    &   ((𝜑𝑥𝑀𝑦𝑀) → (𝑥𝑦) ∈ 𝑀)    &   𝐽 = {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵𝑧) ∈ 𝑀}       (𝜑 → (𝐽 ∈ (TopOn‘𝐵) ∧ 𝑀 = (Clsd‘𝐽)))
 
Theoremtoponmre 20610 The topologies over a given base set form a Moore collection: the intersection of any family of them is a topology, including the empty (relative) intersection which gives the discrete topology distop 20513. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by Mario Carneiro, 5-May-2015.)
(𝐵𝑉 → (TopOn‘𝐵) ∈ (Moore‘𝒫 𝐵))
 
Theoremcldmreon 20611 The closed sets of a topology over a set are a Moore collection over the same set. (Contributed by Stefan O'Rear, 31-Jan-2015.)
(𝐽 ∈ (TopOn‘𝐵) → (Clsd‘𝐽) ∈ (Moore‘𝐵))
 
Theoremiscldtop 20612* A family is the closed sets of a topology iff it is a Moore collection and closed under finite union. (Contributed by Stefan O'Rear, 1-Feb-2015.)
(𝐾 ∈ (Clsd “ (TopOn‘𝐵)) ↔ (𝐾 ∈ (Moore‘𝐵) ∧ ∅ ∈ 𝐾 ∧ ∀𝑥𝐾𝑦𝐾 (𝑥𝑦) ∈ 𝐾))
 
TheoremmreclatdemoBAD 20613 The closed subspaces of a topology-bearing module form a complete lattice. Demonstration for mreclatBAD 16902. (Contributed by Stefan O'Rear, 31-Jan-2015.) TODO (df-riota 6388 update): This proof uses the old df-clat 16823 and references the required instance of mreclatBAD 16902 as a hypothesis. When mreclatBAD 16902 is corrected to become mreclat, delete this theorem and uncomment the mreclatdemo below.
(((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊))) ∈ (Moore‘ (TopOpen‘𝑊)) → (toInc‘((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊)))) ∈ CLat)       (𝑊 ∈ (TopSp ∩ LMod) → (toInc‘((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊)))) ∈ CLat)
 
12.1.5  Neighborhoods
 
Syntaxcnei 20614 Extend class notation with neighborhood relation for topologies.
class nei
 
Definitiondf-nei 20615* Define a function on topologies whose value is a map from a subset to its neighborhoods. (Contributed by NM, 11-Feb-2007.)
nei = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 𝑗 ↦ {𝑦 ∈ 𝒫 𝑗 ∣ ∃𝑔𝑗 (𝑥𝑔𝑔𝑦)}))
 
Theoremneifval 20616* The neighborhood function on the subsets of a topology's base set. (Contributed by NM, 11-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
𝑋 = 𝐽       (𝐽 ∈ Top → (nei‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑥𝑔𝑔𝑣)}))
 
Theoremneif 20617 The neighborhood function is a function of the subsets of a topology's base set. (Contributed by NM, 12-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
𝑋 = 𝐽       (𝐽 ∈ Top → (nei‘𝐽) Fn 𝒫 𝑋)
 
Theoremneiss2 20618 A set with a neighborhood is a subset of the topology's base set. (This theorem depends on a function's value being empty outside of its domain, but it will make later theorems simpler to state.) (Contributed by NM, 12-Feb-2007.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆𝑋)
 
Theoremneival 20619* The set of neighborhoods of a subset of the base set of a topology. (Contributed by NM, 11-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((nei‘𝐽)‘𝑆) = {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑆𝑔𝑔𝑣)})
 
Theoremisnei 20620* The predicate "𝑁 is a neighborhood of 𝑆." (Contributed by FL, 25-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
 
Theoremneiint 20621 An intuitive definition of a neighborhood in terms of interior. (Contributed by Szymon Jaroszewicz, 18-Dec-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋𝑁𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑆 ⊆ ((int‘𝐽)‘𝑁)))
 
Theoremisneip 20622* The predicate "𝑁 is a neighborhood of point 𝑃." (Contributed by NM, 26-Feb-2007.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑃𝑔𝑔𝑁))))
 
Theoremneii1 20623 A neighborhood is included in the topology's base set. (Contributed by NM, 12-Feb-2007.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑁𝑋)
 
Theoremneisspw 20624 The neighborhoods of any set are subsets of the base set. (Contributed by Stefan O'Rear, 6-Aug-2015.)
𝑋 = 𝐽       (𝐽 ∈ Top → ((nei‘𝐽)‘𝑆) ⊆ 𝒫 𝑋)
 
Theoremneii2 20625* Property of a neighborhood. (Contributed by NM, 12-Feb-2007.)
((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
 
Theoremneiss 20626 Any neighborhood of a set 𝑆 is also a neighborhood of any subset 𝑅𝑆. Theorem of [BourbakiTop1] p. I.2. (Contributed by FL, 25-Sep-2006.)
((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅𝑆) → 𝑁 ∈ ((nei‘𝐽)‘𝑅))
 
Theoremssnei 20627 A set is included in its neighborhoods. Proposition Viii of [BourbakiTop1] p. I.3 . (Contributed by FL, 16-Nov-2006.)
((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆𝑁)
 
Theoremelnei 20628 A point belongs to any of its neighborhoods. Proposition Viii of [BourbakiTop1] p. I.3. (Contributed by FL, 28-Sep-2006.)
((𝐽 ∈ Top ∧ 𝑃𝐴𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑃𝑁)
 
Theorem0nnei 20629 The empty set is not a neighborhood of a nonempty set. (Contributed by FL, 18-Sep-2007.)
((𝐽 ∈ Top ∧ 𝑆 ≠ ∅) → ¬ ∅ ∈ ((nei‘𝐽)‘𝑆))
 
Theoremneips 20630* A neighborhood of a set is a neighborhood of every point in the set. Proposition of [BourbakiTop1] p. I.2. (Contributed by FL, 16-Nov-2006.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ ∀𝑝𝑆 𝑁 ∈ ((nei‘𝐽)‘{𝑝})))
 
Theoremopnneissb 20631 An open set is a neighborhood of any of its subsets. (Contributed by FL, 2-Oct-2006.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑁𝐽𝑆𝑋) → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))
 
Theoremopnssneib 20632 Any superset of an open set is a neighborhood of it. (Contributed by NM, 14-Feb-2007.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝐽𝑁𝑋) → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))
 
Theoremssnei2 20633 Any subset of 𝑋 containing a neighborhood of a set is a neighborhood of this set. Proposition Vi of [BourbakiTop1] p. I.3. (Contributed by FL, 2-Oct-2006.)
𝑋 = 𝐽       (((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) ∧ (𝑁𝑀𝑀𝑋)) → 𝑀 ∈ ((nei‘𝐽)‘𝑆))
 
Theoremneindisj 20634 Any neighborhood of an element in the closure of a subset intersects the subset. Part of proof of Theorem 6.6 of [Munkres] p. 97. (Contributed by NM, 26-Feb-2007.)
𝑋 = 𝐽       (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑃 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))) → (𝑁𝑆) ≠ ∅)
 
Theoremopnneiss 20635 An open set is a neighborhood of any of its subsets. (Contributed by NM, 13-Feb-2007.)
((𝐽 ∈ Top ∧ 𝑁𝐽𝑆𝑁) → 𝑁 ∈ ((nei‘𝐽)‘𝑆))
 
Theoremopnneip 20636 An open set is a neighborhood of any of its members. (Contributed by NM, 8-Mar-2007.)
((𝐽 ∈ Top ∧ 𝑁𝐽𝑃𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))
 
Theoremopnnei 20637* A set is open iff it is a neighborhood of all of its points. (Contributed by Jeff Hankins, 15-Sep-2009.)
(𝐽 ∈ Top → (𝑆𝐽 ↔ ∀𝑥𝑆 𝑆 ∈ ((nei‘𝐽)‘{𝑥})))
 
Theoremtpnei 20638 The underlying set of a topology is a neighborhood of any of its subsets. Special case of opnneiss 20635. (Contributed by FL, 2-Oct-2006.)
𝑋 = 𝐽       (𝐽 ∈ Top → (𝑆𝑋𝑋 ∈ ((nei‘𝐽)‘𝑆)))
 
Theoremneiuni 20639 The union of the neighborhoods of a set equals the topology's underlying set. (Contributed by FL, 18-Sep-2007.) (Revised by Mario Carneiro, 9-Apr-2015.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑋 = ((nei‘𝐽)‘𝑆))
 
Theoremneindisj2 20640* A point 𝑃 belongs to the closure of a set 𝑆 iff every neighborhood of 𝑃 meets 𝑆. (Contributed by FL, 15-Sep-2013.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅))
 
Theoremtopssnei 20641 A finer topology has more neighborhoods. (Contributed by Mario Carneiro, 9-Apr-2015.)
𝑋 = 𝐽    &   𝑌 = 𝐾       (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = 𝑌) ∧ 𝐽𝐾) → ((nei‘𝐽)‘𝑆) ⊆ ((nei‘𝐾)‘𝑆))
 
Theoreminnei 20642 The intersection of two neighborhoods of a set is also a neighborhood of the set. Proposition Vii of [BourbakiTop1] p. I.3 . (Contributed by FL, 28-Sep-2006.)
((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑀 ∈ ((nei‘𝐽)‘𝑆)) → (𝑁𝑀) ∈ ((nei‘𝐽)‘𝑆))
 
Theoremopnneiid 20643 Only an open set is a neighborhood of itself. (Contributed by FL, 2-Oct-2006.)
(𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑁) ↔ 𝑁𝐽))
 
Theoremneissex 20644* For any neighborhood 𝑁 of 𝑆, there is a neighborhood 𝑥 of 𝑆 such that 𝑁 is a neighborhood of all subsets of 𝑥. Proposition Viv of [BourbakiTop1] p. I.3 . (Contributed by FL, 2-Oct-2006.)
((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)∀𝑦(𝑦𝑥𝑁 ∈ ((nei‘𝐽)‘𝑦)))
 
Theorem0nei 20645 The empty set is a neighborhood of itself. (Contributed by FL, 10-Dec-2006.)
(𝐽 ∈ Top → ∅ ∈ ((nei‘𝐽)‘∅))
 
Theoremneipeltop 20646* Lemma for neiptopreu 20650. (Contributed by Thierry Arnoux, 6-Jan-2018.)
𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)}       (𝐶𝐽 ↔ (𝐶𝑋 ∧ ∀𝑝𝐶 𝐶 ∈ (𝑁𝑝)))
 
Theoremneiptopuni 20647* Lemma for neiptopreu 20650. (Contributed by Thierry Arnoux, 6-Jan-2018.)
𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)}    &   (𝜑𝑁:𝑋⟶𝒫 𝒫 𝑋)    &   ((((𝜑𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑏 ∈ (𝑁𝑝))    &   ((𝜑𝑝𝑋) → (fi‘(𝑁𝑝)) ⊆ (𝑁𝑝))    &   (((𝜑𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑝𝑎)    &   (((𝜑𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∃𝑏 ∈ (𝑁𝑝)∀𝑞𝑏 𝑎 ∈ (𝑁𝑞))    &   ((𝜑𝑝𝑋) → 𝑋 ∈ (𝑁𝑝))       (𝜑𝑋 = 𝐽)
 
Theoremneiptoptop 20648* Lemma for neiptopreu 20650. (Contributed by Thierry Arnoux, 7-Jan-2018.)
𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)}    &   (𝜑𝑁:𝑋⟶𝒫 𝒫 𝑋)    &   ((((𝜑𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑏 ∈ (𝑁𝑝))    &   ((𝜑𝑝𝑋) → (fi‘(𝑁𝑝)) ⊆ (𝑁𝑝))    &   (((𝜑𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑝𝑎)    &   (((𝜑𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∃𝑏 ∈ (𝑁𝑝)∀𝑞𝑏 𝑎 ∈ (𝑁𝑞))    &   ((𝜑𝑝𝑋) → 𝑋 ∈ (𝑁𝑝))       (𝜑𝐽 ∈ Top)
 
Theoremneiptopnei 20649* Lemma for neiptopreu 20650. (Contributed by Thierry Arnoux, 7-Jan-2018.)
𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)}    &   (𝜑𝑁:𝑋⟶𝒫 𝒫 𝑋)    &   ((((𝜑𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑏 ∈ (𝑁𝑝))    &   ((𝜑𝑝𝑋) → (fi‘(𝑁𝑝)) ⊆ (𝑁𝑝))    &   (((𝜑𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑝𝑎)    &   (((𝜑𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∃𝑏 ∈ (𝑁𝑝)∀𝑞𝑏 𝑎 ∈ (𝑁𝑞))    &   ((𝜑𝑝𝑋) → 𝑋 ∈ (𝑁𝑝))       (𝜑𝑁 = (𝑝𝑋 ↦ ((nei‘𝐽)‘{𝑝})))
 
Theoremneiptopreu 20650* If, to each element 𝑃 of a set 𝑋, we associate a set (𝑁𝑃) fulfilling the properties Vi, Vii, Viii and property Viv of [BourbakiTop1] p. I.2. , corresponding to ssnei 20627, innei 20642, elnei 20628 and neissex 20644, then there is a unique topology 𝑗 such that for any point 𝑝, (𝑁𝑝) is the set of neighborhoods of 𝑝. Proposition 2 of [BourbakiTop1] p. I.3. This can be used to build a topology from a set of neighborhoods. Note that the additional condition that 𝑋 is a neighborhood of all points was added. (Contributed by Thierry Arnoux, 6-Jan-2018.)
𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)}    &   (𝜑𝑁:𝑋⟶𝒫 𝒫 𝑋)    &   ((((𝜑𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑏 ∈ (𝑁𝑝))    &   ((𝜑𝑝𝑋) → (fi‘(𝑁𝑝)) ⊆ (𝑁𝑝))    &   (((𝜑𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑝𝑎)    &   (((𝜑𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∃𝑏 ∈ (𝑁𝑝)∀𝑞𝑏 𝑎 ∈ (𝑁𝑞))    &   ((𝜑𝑝𝑋) → 𝑋 ∈ (𝑁𝑝))       (𝜑 → ∃!𝑗 ∈ (TopOn‘𝑋)𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})))
 
12.1.6  Limit points and perfect sets
 
Syntaxclp 20651 Extend class notation with the limit point function for topologies.
class limPt
 
Syntaxcperf 20652 Extend class notation with the class of all perfect spaces.
class Perf
 
Definitiondf-lp 20653* Define a function on topologies whose value is the set of limit points of the subsets of the base set. See lpval 20656. (Contributed by NM, 10-Feb-2007.)
limPt = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 𝑗 ↦ {𝑦𝑦 ∈ ((cls‘𝑗)‘(𝑥 ∖ {𝑦}))}))
 
Definitiondf-perf 20654 Define the class of all perfect spaces. A perfect space is one for which every point in the set is a limit point of the whole space. (Contributed by Mario Carneiro, 24-Dec-2016.)
Perf = {𝑗 ∈ Top ∣ ((limPt‘𝑗)‘ 𝑗) = 𝑗}
 
Theoremlpfval 20655* The limit point function on the subsets of a topology's base set. (Contributed by NM, 10-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
𝑋 = 𝐽       (𝐽 ∈ Top → (limPt‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ {𝑦𝑦 ∈ ((cls‘𝐽)‘(𝑥 ∖ {𝑦}))}))
 
Theoremlpval 20656* The set of limit points of a subset of the base set of a topology. Alternate definition of limit point in [Munkres] p. 97. (Contributed by NM, 10-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((limPt‘𝐽)‘𝑆) = {𝑥𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))})
 
Theoremislp 20657 The predicate "𝑃 is a limit point of 𝑆." (Contributed by NM, 10-Feb-2007.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃}))))
 
Theoremlpsscls 20658 The limit points of a subset are included in the subset's closure. (Contributed by NM, 26-Feb-2007.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((limPt‘𝐽)‘𝑆) ⊆ ((cls‘𝐽)‘𝑆))
 
Theoremlpss 20659 The limit points of a subset are included in the base set. (Contributed by NM, 9-Nov-2007.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((limPt‘𝐽)‘𝑆) ⊆ 𝑋)
 
Theoremlpdifsn 20660 𝑃 is a limit point of 𝑆 iff it is a limit point of 𝑆 ∖ {𝑃}. (Contributed by Mario Carneiro, 25-Dec-2016.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑃 ∈ ((limPt‘𝐽)‘(𝑆 ∖ {𝑃}))))
 
Theoremlpss3 20661 Subset relationship for limit points. (Contributed by Mario Carneiro, 25-Dec-2016.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((limPt‘𝐽)‘𝑇) ⊆ ((limPt‘𝐽)‘𝑆))
 
Theoremislp2 20662* The predicate "𝑃 is a limit point of 𝑆," in terms of neighborhoods. Definition of limit point in [Munkres] p. 97. Although Munkres uses open neighborhoods, it also works for our more general neighborhoods. (Contributed by NM, 26-Feb-2007.) (Proof shortened by Mario Carneiro, 25-Dec-2016.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛 ∩ (𝑆 ∖ {𝑃})) ≠ ∅))
 
Theoremislp3 20663* The predicate "𝑃 is a limit point of 𝑆 " in terms of open sets. see islp2 20662, elcls 20590, islp 20657. (Contributed by FL, 31-Jul-2009.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ ∀𝑥𝐽 (𝑃𝑥 → (𝑥 ∩ (𝑆 ∖ {𝑃})) ≠ ∅)))
 
Theoremmaxlp 20664 A point is a limit point of the whole space iff the singleton of the point is not open. (Contributed by Mario Carneiro, 24-Dec-2016.)
𝑋 = 𝐽       (𝐽 ∈ Top → (𝑃 ∈ ((limPt‘𝐽)‘𝑋) ↔ (𝑃𝑋 ∧ ¬ {𝑃} ∈ 𝐽)))
 
Theoremclslp 20665 The closure of a subset of a topological space is the subset together with its limit points. Theorem 6.6 of [Munkres] p. 97. (Contributed by NM, 26-Feb-2007.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = (𝑆 ∪ ((limPt‘𝐽)‘𝑆)))
 
Theoremislpi 20666 A point belonging to a set's closure but not the set itself is a limit point. (Contributed by NM, 8-Nov-2007.)
𝑋 = 𝐽       (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑃 ∈ ((cls‘𝐽)‘𝑆) ∧ ¬ 𝑃𝑆)) → 𝑃 ∈ ((limPt‘𝐽)‘𝑆))
 
Theoremcldlp 20667 A subset of a topological space is closed iff it contains all its limit points. Corollary 6.7 of [Munkres] p. 97. (Contributed by NM, 26-Feb-2007.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((limPt‘𝐽)‘𝑆) ⊆ 𝑆))
 
Theoremisperf 20668 Definition of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.)
𝑋 = 𝐽       (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ((limPt‘𝐽)‘𝑋) = 𝑋))
 
Theoremisperf2 20669 Definition of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.)
𝑋 = 𝐽       (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋)))
 
Theoremisperf3 20670* A perfect space is a topology which has no open singletons. (Contributed by Mario Carneiro, 24-Dec-2016.)
𝑋 = 𝐽       (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋 ¬ {𝑥} ∈ 𝐽))
 
Theoremperflp 20671 The limit points of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.)
𝑋 = 𝐽       (𝐽 ∈ Perf → ((limPt‘𝐽)‘𝑋) = 𝑋)
 
Theoremperfi 20672 Property of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.)
𝑋 = 𝐽       ((𝐽 ∈ Perf ∧ 𝑃𝑋) → ¬ {𝑃} ∈ 𝐽)
 
Theoremperftop 20673 A perfect space is a topology. (Contributed by Mario Carneiro, 25-Dec-2016.)
(𝐽 ∈ Perf → 𝐽 ∈ Top)
 
12.1.7  Subspace topologies
 
Theoremrestrcl 20674 Reverse closure for the subspace topology. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 1-May-2015.)
((𝐽t 𝐴) ∈ Top → (𝐽 ∈ V ∧ 𝐴 ∈ V))
 
Theoremrestbas 20675 A subspace topology basis is a basis. 𝑌 is normally a subset of the base set of 𝐽. (Contributed by Mario Carneiro, 19-Mar-2015.)
(𝐵 ∈ TopBases → (𝐵t 𝐴) ∈ TopBases)
 
Theoremtgrest 20676 A subspace can be generated by restricted sets from a basis for the original topology. (Contributed by Mario Carneiro, 19-Mar-2015.) (Proof shortened by Mario Carneiro, 30-Aug-2015.)
((𝐵𝑉𝐴𝑊) → (topGen‘(𝐵t 𝐴)) = ((topGen‘𝐵) ↾t 𝐴))
 
Theoremresttop 20677 A subspace topology is a topology. Definition of subspace topology in [Munkres] p. 89. 𝐴 is normally a subset of the base set of 𝐽. (Contributed by FL, 15-Apr-2007.) (Revised by Mario Carneiro, 1-May-2015.)
((𝐽 ∈ Top ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ Top)
 
Theoremresttopon 20678 A subspace topology is a topology on the base set. (Contributed by Mario Carneiro, 13-Aug-2015.)
((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
 
Theoremrestuni 20679 The underlying set of a subspace topology. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 13-Aug-2015.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴 = (𝐽t 𝐴))
 
Theoremstoig 20680 The topological space built with a subspace topology. (Contributed by FL, 5-Jan-2009.) (Proof shortened by Mario Carneiro, 1-May-2015.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐴𝑋) → {⟨(Base‘ndx), 𝐴⟩, ⟨(TopSet‘ndx), (𝐽t 𝐴)⟩} ∈ TopSp)
 
Theoremrestco 20681 Composition of subspaces. (Contributed by Mario Carneiro, 15-Dec-2013.) (Revised by Mario Carneiro, 1-May-2015.)
((𝐽𝑉𝐴𝑊𝐵𝑋) → ((𝐽t 𝐴) ↾t 𝐵) = (𝐽t (𝐴𝐵)))
 
Theoremrestabs 20682 Equivalence of being a subspace of a subspace and being a subspace of the original. (Contributed by Jeff Hankins, 11-Jul-2009.) (Proof shortened by Mario Carneiro, 1-May-2015.)
((𝐽𝑉𝑆𝑇𝑇𝑊) → ((𝐽t 𝑇) ↾t 𝑆) = (𝐽t 𝑆))
 
Theoremrestin 20683 When the subspace region is not a subset of the base of the topology, the resulting set is the same as the subspace restricted to the base. (Contributed by Mario Carneiro, 15-Dec-2013.)
𝑋 = 𝐽       ((𝐽𝑉𝐴𝑊) → (𝐽t 𝐴) = (𝐽t (𝐴𝑋)))
 
Theoremrestuni2 20684 The underlying set of a subspace topology. (Contributed by Mario Carneiro, 21-Mar-2015.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐴𝑉) → (𝐴𝑋) = (𝐽t 𝐴))
 
Theoremresttopon2 20685 The underlying set of a subspace topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑉) → (𝐽t 𝐴) ∈ (TopOn‘(𝐴𝑋)))
 
Theoremrest0 20686 The subspace topology induced by the topology 𝐽 on the empty set. (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 1-May-2015.)
(𝐽 ∈ Top → (𝐽t ∅) = {∅})
 
Theoremrestsn 20687 The only subspace topology induced by the topology {∅}. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
(𝐴𝑉 → ({∅} ↾t 𝐴) = {∅})
 
Theoremrestsn2 20688 The subspace topology induced by a singleton. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 16-Sep-2015.)
((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t {𝐴}) = 𝒫 {𝐴})
 
Theoremrestcld 20689* A closed set of a subspace topology is a closed set of the original topology intersected with the subset. (Contributed by FL, 11-Jul-2009.) (Proof shortened by Mario Carneiro, 15-Dec-2013.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝐴 ∈ (Clsd‘(𝐽t 𝑆)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥𝑆)))
 
Theoremrestcldi 20690 A closed set is closed in the subspace topology. (Contributed by Jeff Madsen, 2-Sep-2009.)
𝑋 = 𝐽       ((𝐴𝑋𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵𝐴) → 𝐵 ∈ (Clsd‘(𝐽t 𝐴)))
 
Theoremrestcldr 20691 A set which is closed in the subspace topology induced by a closed set is closed in the original topology. (Contributed by Jeff Madsen, 2-Sep-2009.)
((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘(𝐽t 𝐴))) → 𝐵 ∈ (Clsd‘𝐽))
 
Theoremrestopnb 20692 If 𝐵 is an open subset of the subspace base set 𝐴, then any subset of 𝐵 is open iff it is open in 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.)
(((𝐽 ∈ Top ∧ 𝐴𝑉) ∧ (𝐵𝐽𝐵𝐴𝐶𝐵)) → (𝐶𝐽𝐶 ∈ (𝐽t 𝐴)))
 
Theoremssrest 20693 If 𝐾 is a finer topology than 𝐽, then the subspace topologies induced by 𝐴 maintain this relationship. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 1-May-2015.)
((𝐾𝑉𝐽𝐾) → (𝐽t 𝐴) ⊆ (𝐾t 𝐴))
 
Theoremrestopn2 20694 The if 𝐴 is open, then 𝐵 is open in 𝐴 iff it is an open subset of 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.)
((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐵 ∈ (𝐽t 𝐴) ↔ (𝐵𝐽𝐵𝐴)))
 
Theoremrestdis 20695 A subspace of a discrete topology is discrete. (Contributed by Mario Carneiro, 19-Mar-2015.)
((𝐴𝑉𝐵𝐴) → (𝒫 𝐴t 𝐵) = 𝒫 𝐵)
 
Theoremrestfpw 20696 The restriction of the set of finite subsets of 𝐴 is the set of finite subsets of 𝐵. (Contributed by Mario Carneiro, 18-Sep-2015.)
((𝐴𝑉𝐵𝐴) → ((𝒫 𝐴 ∩ Fin) ↾t 𝐵) = (𝒫 𝐵 ∩ Fin))
 
Theoremneitr 20697 The neighborhood of a trace is the trace of the neighborhood. (Contributed by Thierry Arnoux, 17-Jan-2018.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝐴) → ((nei‘(𝐽t 𝐴))‘𝐵) = (((nei‘𝐽)‘𝐵) ↾t 𝐴))
 
Theoremrestcls 20698 A closure in a subspace topology. (Contributed by Jeff Hankins, 22-Jan-2010.) (Revised by Mario Carneiro, 15-Dec-2013.)
𝑋 = 𝐽    &   𝐾 = (𝐽t 𝑌)       ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((cls‘𝐾)‘𝑆) = (((cls‘𝐽)‘𝑆) ∩ 𝑌))
 
Theoremrestntr 20699 An interior in a subspace topology. Willard in General Topology says that there is no analogue of restcls 20698 for interiors. In some sense, that is true. (Contributed by Jeff Hankins, 23-Jan-2010.) (Revised by Mario Carneiro, 15-Dec-2013.)
𝑋 = 𝐽    &   𝐾 = (𝐽t 𝑌)       ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((int‘𝐾)‘𝑆) = (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌))
 
Theoremrestlp 20700 The limit points of a subset restrict naturally in a subspace. (Contributed by Mario Carneiro, 25-Dec-2016.)
𝑋 = 𝐽    &   𝐾 = (𝐽t 𝑌)       ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((limPt‘𝐾)‘𝑆) = (((limPt‘𝐽)‘𝑆) ∩ 𝑌))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42426
  Copyright terms: Public domain < Previous  Next >