MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odcong Structured version   Visualization version   GIF version

Theorem odcong 18677
Description: If two multipliers are congruent relative to the base point's order, the corresponding multiples are the same. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
odcong ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑀𝑁) ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴)))

Proof of Theorem odcong
StepHypRef Expression
1 zsubcl 12025 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁) ∈ ℤ)
2 odcl.1 . . . 4 𝑋 = (Base‘𝐺)
3 odcl.2 . . . 4 𝑂 = (od‘𝐺)
4 odid.3 . . . 4 · = (.g𝐺)
5 odid.4 . . . 4 0 = (0g𝐺)
62, 3, 4, 5oddvds 18675 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑀𝑁) ∈ ℤ) → ((𝑂𝐴) ∥ (𝑀𝑁) ↔ ((𝑀𝑁) · 𝐴) = 0 ))
71, 6syl3an3 1161 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑀𝑁) ↔ ((𝑀𝑁) · 𝐴) = 0 ))
8 simp1 1132 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐺 ∈ Grp)
9 simp3l 1197 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℤ)
10 simp3r 1198 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℤ)
11 simp2 1133 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐴𝑋)
12 eqid 2821 . . . . 5 (-g𝐺) = (-g𝐺)
132, 4, 12mulgsubdir 18267 . . . 4 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴𝑋)) → ((𝑀𝑁) · 𝐴) = ((𝑀 · 𝐴)(-g𝐺)(𝑁 · 𝐴)))
148, 9, 10, 11, 13syl13anc 1368 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑀𝑁) · 𝐴) = ((𝑀 · 𝐴)(-g𝐺)(𝑁 · 𝐴)))
1514eqeq1d 2823 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (((𝑀𝑁) · 𝐴) = 0 ↔ ((𝑀 · 𝐴)(-g𝐺)(𝑁 · 𝐴)) = 0 ))
162, 4mulgcl 18245 . . . 4 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝐴𝑋) → (𝑀 · 𝐴) ∈ 𝑋)
178, 9, 11, 16syl3anc 1367 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 · 𝐴) ∈ 𝑋)
182, 4mulgcl 18245 . . . 4 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝐴𝑋) → (𝑁 · 𝐴) ∈ 𝑋)
198, 10, 11, 18syl3anc 1367 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁 · 𝐴) ∈ 𝑋)
202, 5, 12grpsubeq0 18185 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 · 𝐴) ∈ 𝑋 ∧ (𝑁 · 𝐴) ∈ 𝑋) → (((𝑀 · 𝐴)(-g𝐺)(𝑁 · 𝐴)) = 0 ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴)))
218, 17, 19, 20syl3anc 1367 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (((𝑀 · 𝐴)(-g𝐺)(𝑁 · 𝐴)) = 0 ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴)))
227, 15, 213bitrd 307 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑀𝑁) ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114   class class class wbr 5066  cfv 6355  (class class class)co 7156  cmin 10870  cz 11982  cdvds 15607  Basecbs 16483  0gc0g 16713  Grpcgrp 18103  -gcsg 18105  .gcmg 18224  odcod 18652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-dvds 15608  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-od 18656
This theorem is referenced by:  odf1  18689  dfod2  18691  odf1o1  18697  odf1o2  18698  ablsimpgfindlem1  19229  chrcong  20676  cygznlem1  20713  dchrptlem1  25840
  Copyright terms: Public domain W3C validator