MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climsubc1 Structured version   Visualization version   GIF version

Theorem climsubc1 14994
Description: Limit of a constant 𝐶 subtracted from each term of a sequence. (Contributed by Mario Carneiro, 9-Feb-2014.)
Hypotheses
Ref Expression
climadd.1 𝑍 = (ℤ𝑀)
climadd.2 (𝜑𝑀 ∈ ℤ)
climadd.4 (𝜑𝐹𝐴)
climaddc1.5 (𝜑𝐶 ∈ ℂ)
climaddc1.6 (𝜑𝐺𝑊)
climaddc1.7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
climsubc1.h ((𝜑𝑘𝑍) → (𝐺𝑘) = ((𝐹𝑘) − 𝐶))
Assertion
Ref Expression
climsubc1 (𝜑𝐺 ⇝ (𝐴𝐶))
Distinct variable groups:   𝐶,𝑘   𝑘,𝐹   𝜑,𝑘   𝐴,𝑘   𝑘,𝐺   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝑊(𝑘)

Proof of Theorem climsubc1
StepHypRef Expression
1 climadd.1 . 2 𝑍 = (ℤ𝑀)
2 climadd.2 . 2 (𝜑𝑀 ∈ ℤ)
3 climadd.4 . 2 (𝜑𝐹𝐴)
4 climaddc1.6 . 2 (𝜑𝐺𝑊)
5 climaddc1.5 . . 3 (𝜑𝐶 ∈ ℂ)
6 0z 11993 . . 3 0 ∈ ℤ
7 uzssz 12265 . . . 4 (ℤ‘0) ⊆ ℤ
8 zex 11991 . . . 4 ℤ ∈ V
97, 8climconst2 14905 . . 3 ((𝐶 ∈ ℂ ∧ 0 ∈ ℤ) → (ℤ × {𝐶}) ⇝ 𝐶)
105, 6, 9sylancl 588 . 2 (𝜑 → (ℤ × {𝐶}) ⇝ 𝐶)
11 climaddc1.7 . 2 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
12 eluzelz 12254 . . . . 5 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
1312, 1eleq2s 2931 . . . 4 (𝑘𝑍𝑘 ∈ ℤ)
14 fvconst2g 6964 . . . 4 ((𝐶 ∈ ℂ ∧ 𝑘 ∈ ℤ) → ((ℤ × {𝐶})‘𝑘) = 𝐶)
155, 13, 14syl2an 597 . . 3 ((𝜑𝑘𝑍) → ((ℤ × {𝐶})‘𝑘) = 𝐶)
165adantr 483 . . 3 ((𝜑𝑘𝑍) → 𝐶 ∈ ℂ)
1715, 16eqeltrd 2913 . 2 ((𝜑𝑘𝑍) → ((ℤ × {𝐶})‘𝑘) ∈ ℂ)
18 climsubc1.h . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) = ((𝐹𝑘) − 𝐶))
1915oveq2d 7172 . . 3 ((𝜑𝑘𝑍) → ((𝐹𝑘) − ((ℤ × {𝐶})‘𝑘)) = ((𝐹𝑘) − 𝐶))
2018, 19eqtr4d 2859 . 2 ((𝜑𝑘𝑍) → (𝐺𝑘) = ((𝐹𝑘) − ((ℤ × {𝐶})‘𝑘)))
211, 2, 3, 4, 10, 11, 17, 20climsub 14990 1 (𝜑𝐺 ⇝ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  {csn 4567   class class class wbr 5066   × cxp 5553  cfv 6355  (class class class)co 7156  cc 10535  0cc0 10537  cmin 10870  cz 11982  cuz 12244  cli 14841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845
This theorem is referenced by:  clim2ser  15011  ulmdvlem1  24988  fourierdlem112  42523
  Copyright terms: Public domain W3C validator