MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climsub Structured version   Visualization version   GIF version

Theorem climsub 14975
Description: Limit of the difference of two converging sequences. Proposition 12-2.1(b) of [Gleason] p. 168. (Contributed by NM, 4-Aug-2007.) (Proof shortened by Mario Carneiro, 1-Feb-2014.)
Hypotheses
Ref Expression
climadd.1 𝑍 = (ℤ𝑀)
climadd.2 (𝜑𝑀 ∈ ℤ)
climadd.4 (𝜑𝐹𝐴)
climadd.6 (𝜑𝐻𝑋)
climadd.7 (𝜑𝐺𝐵)
climadd.8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
climadd.9 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
climsub.h ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) − (𝐺𝑘)))
Assertion
Ref Expression
climsub (𝜑𝐻 ⇝ (𝐴𝐵))
Distinct variable groups:   𝐵,𝑘   𝑘,𝐹   𝜑,𝑘   𝐴,𝑘   𝑘,𝐺   𝑘,𝐻   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝑋(𝑘)

Proof of Theorem climsub
Dummy variables 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climadd.1 . 2 𝑍 = (ℤ𝑀)
2 climadd.2 . 2 (𝜑𝑀 ∈ ℤ)
3 climadd.4 . . 3 (𝜑𝐹𝐴)
4 climcl 14841 . . 3 (𝐹𝐴𝐴 ∈ ℂ)
53, 4syl 17 . 2 (𝜑𝐴 ∈ ℂ)
6 climadd.7 . . 3 (𝜑𝐺𝐵)
7 climcl 14841 . . 3 (𝐺𝐵𝐵 ∈ ℂ)
86, 7syl 17 . 2 (𝜑𝐵 ∈ ℂ)
9 subcl 10871 . . 3 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢𝑣) ∈ ℂ)
109adantl 484 . 2 ((𝜑 ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢𝑣) ∈ ℂ)
11 climadd.6 . 2 (𝜑𝐻𝑋)
12 simpr 487 . . 3 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
135adantr 483 . . 3 ((𝜑𝑥 ∈ ℝ+) → 𝐴 ∈ ℂ)
148adantr 483 . . 3 ((𝜑𝑥 ∈ ℝ+) → 𝐵 ∈ ℂ)
15 subcn2 14936 . . 3 ((𝑥 ∈ ℝ+𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐴𝐵))) < 𝑥))
1612, 13, 14, 15syl3anc 1367 . 2 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐴𝐵))) < 𝑥))
17 climadd.8 . 2 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
18 climadd.9 . 2 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
19 climsub.h . 2 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) − (𝐺𝑘)))
201, 2, 5, 8, 10, 3, 6, 11, 16, 17, 18, 19climcn2 14934 1 (𝜑𝐻 ⇝ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3138  wrex 3139   class class class wbr 5052  cfv 6341  (class class class)co 7142  cc 10521   < clt 10661  cmin 10856  cz 11968  cuz 12230  +crp 12376  abscabs 14578  cli 14826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-cnex 10579  ax-resscn 10580  ax-1cn 10581  ax-icn 10582  ax-addcl 10583  ax-addrcl 10584  ax-mulcl 10585  ax-mulrcl 10586  ax-mulcom 10587  ax-addass 10588  ax-mulass 10589  ax-distr 10590  ax-i2m1 10591  ax-1ne0 10592  ax-1rid 10593  ax-rnegex 10594  ax-rrecex 10595  ax-cnre 10596  ax-pre-lttri 10597  ax-pre-lttrn 10598  ax-pre-ltadd 10599  ax-pre-mulgt0 10600  ax-pre-sup 10601
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7567  df-2nd 7676  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-sup 8892  df-pnf 10663  df-mnf 10664  df-xr 10665  df-ltxr 10666  df-le 10667  df-sub 10858  df-neg 10859  df-div 11284  df-nn 11625  df-2 11687  df-3 11688  df-n0 11885  df-z 11969  df-uz 12231  df-rp 12377  df-seq 13360  df-exp 13420  df-cj 14443  df-re 14444  df-im 14445  df-sqrt 14579  df-abs 14580  df-clim 14830
This theorem is referenced by:  climsubc1  14979  climsubc2  14980  climle  14981  supcvg  15196  mbfi1flimlem  24306  ulmdvlem1  24974  abelthlem6  25010  atantayl  25501  lgamcvg2  25618  hashnzfzclim  40744  binomcxplemrat  40772  climsubmpt  42031  ioodvbdlimc2lem  42309
  Copyright terms: Public domain W3C validator