MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmdvlem1 Structured version   Visualization version   GIF version

Theorem ulmdvlem1 24071
Description: Lemma for ulmdv 24074. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
ulmdv.z 𝑍 = (ℤ𝑀)
ulmdv.s (𝜑𝑆 ∈ {ℝ, ℂ})
ulmdv.m (𝜑𝑀 ∈ ℤ)
ulmdv.f (𝜑𝐹:𝑍⟶(ℂ ↑𝑚 𝑋))
ulmdv.g (𝜑𝐺:𝑋⟶ℂ)
ulmdv.l ((𝜑𝑧𝑋) → (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ⇝ (𝐺𝑧))
ulmdv.u (𝜑 → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))(⇝𝑢𝑋)𝐻)
ulmdvlem1.c ((𝜑𝜓) → 𝐶𝑋)
ulmdvlem1.r ((𝜑𝜓) → 𝑅 ∈ ℝ+)
ulmdvlem1.u ((𝜑𝜓) → 𝑈 ∈ ℝ+)
ulmdvlem1.v ((𝜑𝜓) → 𝑊 ∈ ℝ+)
ulmdvlem1.l ((𝜑𝜓) → 𝑈 < 𝑊)
ulmdvlem1.b ((𝜑𝜓) → (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈) ⊆ 𝑋)
ulmdvlem1.a ((𝜑𝜓) → (abs‘(𝑌𝐶)) < 𝑈)
ulmdvlem1.n ((𝜑𝜓) → 𝑁𝑍)
ulmdvlem1.1 ((𝜑𝜓) → ∀𝑚 ∈ (ℤ𝑁)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑅 / 2) / 2))
ulmdvlem1.2 ((𝜑𝜓) → (abs‘(((𝑆 D (𝐹𝑁))‘𝐶) − (𝐻𝐶))) < (𝑅 / 2))
ulmdvlem1.y ((𝜑𝜓) → 𝑌𝑋)
ulmdvlem1.3 ((𝜑𝜓) → 𝑌𝐶)
ulmdvlem1.4 ((𝜑𝜓) → ((abs‘(𝑌𝐶)) < 𝑊 → (abs‘(((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)) − ((𝑆 D (𝐹𝑁))‘𝐶))) < ((𝑅 / 2) / 2)))
Assertion
Ref Expression
ulmdvlem1 ((𝜑𝜓) → (abs‘((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − (𝐻𝐶))) < 𝑅)
Distinct variable groups:   𝑘,𝑚,𝑥,𝑧,𝐹   𝑧,𝐺   𝑘,𝑁,𝑚,𝑥   𝐶,𝑘,𝑧   𝑧,𝐻   𝑘,𝑀,𝑥   𝜑,𝑘,𝑚,𝑥,𝑧   𝑆,𝑘,𝑚,𝑥,𝑧   𝑅,𝑚,𝑥   𝑘,𝑋,𝑚,𝑥,𝑧   𝑘,𝑌,𝑧   𝑘,𝑍,𝑚,𝑥,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑧,𝑘,𝑚)   𝐶(𝑥,𝑚)   𝑅(𝑧,𝑘)   𝑈(𝑥,𝑧,𝑘,𝑚)   𝐺(𝑥,𝑘,𝑚)   𝐻(𝑥,𝑘,𝑚)   𝑀(𝑧,𝑚)   𝑁(𝑧)   𝑊(𝑥,𝑧,𝑘,𝑚)   𝑌(𝑥,𝑚)

Proof of Theorem ulmdvlem1
Dummy variables 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmdv.g . . . . . 6 (𝜑𝐺:𝑋⟶ℂ)
21adantr 481 . . . . 5 ((𝜑𝜓) → 𝐺:𝑋⟶ℂ)
3 ulmdvlem1.y . . . . 5 ((𝜑𝜓) → 𝑌𝑋)
42, 3ffvelrnd 6321 . . . 4 ((𝜑𝜓) → (𝐺𝑌) ∈ ℂ)
5 ulmdvlem1.c . . . . 5 ((𝜑𝜓) → 𝐶𝑋)
62, 5ffvelrnd 6321 . . . 4 ((𝜑𝜓) → (𝐺𝐶) ∈ ℂ)
74, 6subcld 10343 . . 3 ((𝜑𝜓) → ((𝐺𝑌) − (𝐺𝐶)) ∈ ℂ)
8 ulmdvlem1.n . . . . . . . . . . 11 ((𝜑𝜓) → 𝑁𝑍)
9 fveq2 6153 . . . . . . . . . . . . 13 (𝑘 = 𝑁 → (𝐹𝑘) = (𝐹𝑁))
109oveq2d 6626 . . . . . . . . . . . 12 (𝑘 = 𝑁 → (𝑆 D (𝐹𝑘)) = (𝑆 D (𝐹𝑁)))
11 eqid 2621 . . . . . . . . . . . 12 (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))) = (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))
12 ovex 6638 . . . . . . . . . . . 12 (𝑆 D (𝐹𝑁)) ∈ V
1310, 11, 12fvmpt 6244 . . . . . . . . . . 11 (𝑁𝑍 → ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑁) = (𝑆 D (𝐹𝑁)))
148, 13syl 17 . . . . . . . . . 10 ((𝜑𝜓) → ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑁) = (𝑆 D (𝐹𝑁)))
15 ovex 6638 . . . . . . . . . . . . . . 15 (𝑆 D (𝐹𝑘)) ∈ V
1615rgenw 2919 . . . . . . . . . . . . . 14 𝑘𝑍 (𝑆 D (𝐹𝑘)) ∈ V
1711fnmpt 5982 . . . . . . . . . . . . . 14 (∀𝑘𝑍 (𝑆 D (𝐹𝑘)) ∈ V → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))) Fn 𝑍)
1816, 17mp1i 13 . . . . . . . . . . . . 13 (𝜑 → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))) Fn 𝑍)
19 ulmdv.u . . . . . . . . . . . . 13 (𝜑 → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))(⇝𝑢𝑋)𝐻)
20 ulmf2 24055 . . . . . . . . . . . . 13 (((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))) Fn 𝑍 ∧ (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))(⇝𝑢𝑋)𝐻) → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))):𝑍⟶(ℂ ↑𝑚 𝑋))
2118, 19, 20syl2anc 692 . . . . . . . . . . . 12 (𝜑 → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))):𝑍⟶(ℂ ↑𝑚 𝑋))
2221adantr 481 . . . . . . . . . . 11 ((𝜑𝜓) → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))):𝑍⟶(ℂ ↑𝑚 𝑋))
2322, 8ffvelrnd 6321 . . . . . . . . . 10 ((𝜑𝜓) → ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑁) ∈ (ℂ ↑𝑚 𝑋))
2414, 23eqeltrrd 2699 . . . . . . . . 9 ((𝜑𝜓) → (𝑆 D (𝐹𝑁)) ∈ (ℂ ↑𝑚 𝑋))
25 elmapi 7830 . . . . . . . . 9 ((𝑆 D (𝐹𝑁)) ∈ (ℂ ↑𝑚 𝑋) → (𝑆 D (𝐹𝑁)):𝑋⟶ℂ)
2624, 25syl 17 . . . . . . . 8 ((𝜑𝜓) → (𝑆 D (𝐹𝑁)):𝑋⟶ℂ)
27 fdm 6013 . . . . . . . 8 ((𝑆 D (𝐹𝑁)):𝑋⟶ℂ → dom (𝑆 D (𝐹𝑁)) = 𝑋)
2826, 27syl 17 . . . . . . 7 ((𝜑𝜓) → dom (𝑆 D (𝐹𝑁)) = 𝑋)
29 dvbsss 23585 . . . . . . 7 dom (𝑆 D (𝐹𝑁)) ⊆ 𝑆
3028, 29syl6eqssr 3640 . . . . . 6 ((𝜑𝜓) → 𝑋𝑆)
31 ulmdv.s . . . . . . . 8 (𝜑𝑆 ∈ {ℝ, ℂ})
32 recnprss 23587 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
3331, 32syl 17 . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
3433adantr 481 . . . . . 6 ((𝜑𝜓) → 𝑆 ⊆ ℂ)
3530, 34sstrd 3597 . . . . 5 ((𝜑𝜓) → 𝑋 ⊆ ℂ)
3635, 3sseldd 3588 . . . 4 ((𝜑𝜓) → 𝑌 ∈ ℂ)
3735, 5sseldd 3588 . . . 4 ((𝜑𝜓) → 𝐶 ∈ ℂ)
3836, 37subcld 10343 . . 3 ((𝜑𝜓) → (𝑌𝐶) ∈ ℂ)
39 ulmdvlem1.3 . . . 4 ((𝜑𝜓) → 𝑌𝐶)
4036, 37, 39subne0d 10352 . . 3 ((𝜑𝜓) → (𝑌𝐶) ≠ 0)
417, 38, 40divcld 10752 . 2 ((𝜑𝜓) → (((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) ∈ ℂ)
42 ulmcl 24052 . . . . 5 ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))(⇝𝑢𝑋)𝐻𝐻:𝑋⟶ℂ)
4319, 42syl 17 . . . 4 (𝜑𝐻:𝑋⟶ℂ)
4443adantr 481 . . 3 ((𝜑𝜓) → 𝐻:𝑋⟶ℂ)
4544, 5ffvelrnd 6321 . 2 ((𝜑𝜓) → (𝐻𝐶) ∈ ℂ)
4626, 5ffvelrnd 6321 . 2 ((𝜑𝜓) → ((𝑆 D (𝐹𝑁))‘𝐶) ∈ ℂ)
47 ulmdvlem1.r . . 3 ((𝜑𝜓) → 𝑅 ∈ ℝ+)
4847rpred 11823 . 2 ((𝜑𝜓) → 𝑅 ∈ ℝ)
4941, 46subcld 10343 . . . 4 ((𝜑𝜓) → ((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((𝑆 D (𝐹𝑁))‘𝐶)) ∈ ℂ)
5049abscld 14116 . . 3 ((𝜑𝜓) → (abs‘((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((𝑆 D (𝐹𝑁))‘𝐶))) ∈ ℝ)
51 ulmdv.f . . . . . . . . . . . 12 (𝜑𝐹:𝑍⟶(ℂ ↑𝑚 𝑋))
5251adantr 481 . . . . . . . . . . 11 ((𝜑𝜓) → 𝐹:𝑍⟶(ℂ ↑𝑚 𝑋))
5352, 8ffvelrnd 6321 . . . . . . . . . 10 ((𝜑𝜓) → (𝐹𝑁) ∈ (ℂ ↑𝑚 𝑋))
54 elmapi 7830 . . . . . . . . . 10 ((𝐹𝑁) ∈ (ℂ ↑𝑚 𝑋) → (𝐹𝑁):𝑋⟶ℂ)
5553, 54syl 17 . . . . . . . . 9 ((𝜑𝜓) → (𝐹𝑁):𝑋⟶ℂ)
5655, 3ffvelrnd 6321 . . . . . . . 8 ((𝜑𝜓) → ((𝐹𝑁)‘𝑌) ∈ ℂ)
5755, 5ffvelrnd 6321 . . . . . . . 8 ((𝜑𝜓) → ((𝐹𝑁)‘𝐶) ∈ ℂ)
5856, 57subcld 10343 . . . . . . 7 ((𝜑𝜓) → (((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) ∈ ℂ)
5958, 38, 40divcld 10752 . . . . . 6 ((𝜑𝜓) → ((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)) ∈ ℂ)
6041, 59subcld 10343 . . . . 5 ((𝜑𝜓) → ((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶))) ∈ ℂ)
6160abscld 14116 . . . 4 ((𝜑𝜓) → (abs‘((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)))) ∈ ℝ)
6259, 46subcld 10343 . . . . 5 ((𝜑𝜓) → (((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)) − ((𝑆 D (𝐹𝑁))‘𝐶)) ∈ ℂ)
6362abscld 14116 . . . 4 ((𝜑𝜓) → (abs‘(((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)) − ((𝑆 D (𝐹𝑁))‘𝐶))) ∈ ℝ)
6461, 63readdcld 10020 . . 3 ((𝜑𝜓) → ((abs‘((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)))) + (abs‘(((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)) − ((𝑆 D (𝐹𝑁))‘𝐶)))) ∈ ℝ)
6548rehalfcld 11230 . . 3 ((𝜑𝜓) → (𝑅 / 2) ∈ ℝ)
6641, 46, 59abs3difd 14140 . . 3 ((𝜑𝜓) → (abs‘((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((𝑆 D (𝐹𝑁))‘𝐶))) ≤ ((abs‘((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)))) + (abs‘(((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)) − ((𝑆 D (𝐹𝑁))‘𝐶)))))
6765rehalfcld 11230 . . . . 5 ((𝜑𝜓) → ((𝑅 / 2) / 2) ∈ ℝ)
684, 56, 6, 57sub4d 10392 . . . . . . . . . 10 ((𝜑𝜓) → (((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶))) = (((𝐺𝑌) − (𝐺𝐶)) − (((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶))))
6968oveq1d 6625 . . . . . . . . 9 ((𝜑𝜓) → ((((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶))) / (𝑌𝐶)) = ((((𝐺𝑌) − (𝐺𝐶)) − (((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶))) / (𝑌𝐶)))
707, 58, 38, 40divsubdird 10791 . . . . . . . . 9 ((𝜑𝜓) → ((((𝐺𝑌) − (𝐺𝐶)) − (((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶))) / (𝑌𝐶)) = ((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶))))
7169, 70eqtrd 2655 . . . . . . . 8 ((𝜑𝜓) → ((((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶))) / (𝑌𝐶)) = ((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶))))
7271fveq2d 6157 . . . . . . 7 ((𝜑𝜓) → (abs‘((((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶))) / (𝑌𝐶))) = (abs‘((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)))))
734, 56subcld 10343 . . . . . . . . 9 ((𝜑𝜓) → ((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) ∈ ℂ)
746, 57subcld 10343 . . . . . . . . 9 ((𝜑𝜓) → ((𝐺𝐶) − ((𝐹𝑁)‘𝐶)) ∈ ℂ)
7573, 74subcld 10343 . . . . . . . 8 ((𝜑𝜓) → (((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶))) ∈ ℂ)
7675, 38, 40absdivd 14135 . . . . . . 7 ((𝜑𝜓) → (abs‘((((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶))) / (𝑌𝐶))) = ((abs‘(((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶)))) / (abs‘(𝑌𝐶))))
7772, 76eqtr3d 2657 . . . . . 6 ((𝜑𝜓) → (abs‘((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)))) = ((abs‘(((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶)))) / (abs‘(𝑌𝐶))))
78 eqid 2621 . . . . . . . 8 (ℤ𝑁) = (ℤ𝑁)
79 ulmdv.z . . . . . . . . . 10 𝑍 = (ℤ𝑀)
808, 79syl6eleq 2708 . . . . . . . . 9 ((𝜑𝜓) → 𝑁 ∈ (ℤ𝑀))
81 eluzelz 11648 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
8280, 81syl 17 . . . . . . . 8 ((𝜑𝜓) → 𝑁 ∈ ℤ)
83 ulmdv.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
8483adantr 481 . . . . . . . . . 10 ((𝜑𝜓) → 𝑀 ∈ ℤ)
85 ulmdv.l . . . . . . . . . . . . . 14 ((𝜑𝑧𝑋) → (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ⇝ (𝐺𝑧))
8685ralrimiva 2961 . . . . . . . . . . . . 13 (𝜑 → ∀𝑧𝑋 (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ⇝ (𝐺𝑧))
8786adantr 481 . . . . . . . . . . . 12 ((𝜑𝜓) → ∀𝑧𝑋 (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ⇝ (𝐺𝑧))
88 fveq2 6153 . . . . . . . . . . . . . . 15 (𝑧 = 𝑌 → ((𝐹𝑘)‘𝑧) = ((𝐹𝑘)‘𝑌))
8988mpteq2dv 4710 . . . . . . . . . . . . . 14 (𝑧 = 𝑌 → (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) = (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑌)))
90 fveq2 6153 . . . . . . . . . . . . . 14 (𝑧 = 𝑌 → (𝐺𝑧) = (𝐺𝑌))
9189, 90breq12d 4631 . . . . . . . . . . . . 13 (𝑧 = 𝑌 → ((𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ⇝ (𝐺𝑧) ↔ (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑌)) ⇝ (𝐺𝑌)))
9291rspcv 3294 . . . . . . . . . . . 12 (𝑌𝑋 → (∀𝑧𝑋 (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ⇝ (𝐺𝑧) → (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑌)) ⇝ (𝐺𝑌)))
933, 87, 92sylc 65 . . . . . . . . . . 11 ((𝜑𝜓) → (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑌)) ⇝ (𝐺𝑌))
94 fvex 6163 . . . . . . . . . . . . . 14 (ℤ𝑀) ∈ V
9579, 94eqeltri 2694 . . . . . . . . . . . . 13 𝑍 ∈ V
9695mptex 6446 . . . . . . . . . . . 12 (𝑘𝑍 ↦ (((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌))) ∈ V
9796a1i 11 . . . . . . . . . . 11 ((𝜑𝜓) → (𝑘𝑍 ↦ (((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌))) ∈ V)
98 fveq2 6153 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
9998fveq1d 6155 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → ((𝐹𝑘)‘𝑌) = ((𝐹𝑛)‘𝑌))
100 eqid 2621 . . . . . . . . . . . . . 14 (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑌)) = (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑌))
101 fvex 6163 . . . . . . . . . . . . . 14 ((𝐹𝑛)‘𝑌) ∈ V
10299, 100, 101fvmpt 6244 . . . . . . . . . . . . 13 (𝑛𝑍 → ((𝑘𝑍 ↦ ((𝐹𝑘)‘𝑌))‘𝑛) = ((𝐹𝑛)‘𝑌))
103102adantl 482 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ ((𝐹𝑘)‘𝑌))‘𝑛) = ((𝐹𝑛)‘𝑌))
10452ffvelrnda 6320 . . . . . . . . . . . . . 14 (((𝜑𝜓) ∧ 𝑛𝑍) → (𝐹𝑛) ∈ (ℂ ↑𝑚 𝑋))
105 elmapi 7830 . . . . . . . . . . . . . 14 ((𝐹𝑛) ∈ (ℂ ↑𝑚 𝑋) → (𝐹𝑛):𝑋⟶ℂ)
106104, 105syl 17 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ 𝑛𝑍) → (𝐹𝑛):𝑋⟶ℂ)
1073adantr 481 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ 𝑛𝑍) → 𝑌𝑋)
108106, 107ffvelrnd 6321 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑌) ∈ ℂ)
109103, 108eqeltrd 2698 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ ((𝐹𝑘)‘𝑌))‘𝑛) ∈ ℂ)
11099oveq1d 6625 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) = (((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)))
111 eqid 2621 . . . . . . . . . . . . . 14 (𝑘𝑍 ↦ (((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌))) = (𝑘𝑍 ↦ (((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)))
112 ovex 6638 . . . . . . . . . . . . . 14 (((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) ∈ V
113110, 111, 112fvmpt 6244 . . . . . . . . . . . . 13 (𝑛𝑍 → ((𝑘𝑍 ↦ (((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)))‘𝑛) = (((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)))
114113adantl 482 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ (((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)))‘𝑛) = (((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)))
115103oveq1d 6625 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛𝑍) → (((𝑘𝑍 ↦ ((𝐹𝑘)‘𝑌))‘𝑛) − ((𝐹𝑁)‘𝑌)) = (((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)))
116114, 115eqtr4d 2658 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ (((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)))‘𝑛) = (((𝑘𝑍 ↦ ((𝐹𝑘)‘𝑌))‘𝑛) − ((𝐹𝑁)‘𝑌)))
11779, 84, 93, 56, 97, 109, 116climsubc1 14309 . . . . . . . . . 10 ((𝜑𝜓) → (𝑘𝑍 ↦ (((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌))) ⇝ ((𝐺𝑌) − ((𝐹𝑁)‘𝑌)))
11895mptex 6446 . . . . . . . . . . 11 (𝑘𝑍 ↦ ((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))) ∈ V
119118a1i 11 . . . . . . . . . 10 ((𝜑𝜓) → (𝑘𝑍 ↦ ((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))) ∈ V)
120 fveq2 6153 . . . . . . . . . . . . . . 15 (𝑧 = 𝐶 → ((𝐹𝑘)‘𝑧) = ((𝐹𝑘)‘𝐶))
121120mpteq2dv 4710 . . . . . . . . . . . . . 14 (𝑧 = 𝐶 → (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) = (𝑘𝑍 ↦ ((𝐹𝑘)‘𝐶)))
122 fveq2 6153 . . . . . . . . . . . . . 14 (𝑧 = 𝐶 → (𝐺𝑧) = (𝐺𝐶))
123121, 122breq12d 4631 . . . . . . . . . . . . 13 (𝑧 = 𝐶 → ((𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ⇝ (𝐺𝑧) ↔ (𝑘𝑍 ↦ ((𝐹𝑘)‘𝐶)) ⇝ (𝐺𝐶)))
124123rspcv 3294 . . . . . . . . . . . 12 (𝐶𝑋 → (∀𝑧𝑋 (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ⇝ (𝐺𝑧) → (𝑘𝑍 ↦ ((𝐹𝑘)‘𝐶)) ⇝ (𝐺𝐶)))
1255, 87, 124sylc 65 . . . . . . . . . . 11 ((𝜑𝜓) → (𝑘𝑍 ↦ ((𝐹𝑘)‘𝐶)) ⇝ (𝐺𝐶))
12695mptex 6446 . . . . . . . . . . . 12 (𝑘𝑍 ↦ (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))) ∈ V
127126a1i 11 . . . . . . . . . . 11 ((𝜑𝜓) → (𝑘𝑍 ↦ (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))) ∈ V)
12898fveq1d 6155 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → ((𝐹𝑘)‘𝐶) = ((𝐹𝑛)‘𝐶))
129 eqid 2621 . . . . . . . . . . . . . 14 (𝑘𝑍 ↦ ((𝐹𝑘)‘𝐶)) = (𝑘𝑍 ↦ ((𝐹𝑘)‘𝐶))
130 fvex 6163 . . . . . . . . . . . . . 14 ((𝐹𝑛)‘𝐶) ∈ V
131128, 129, 130fvmpt 6244 . . . . . . . . . . . . 13 (𝑛𝑍 → ((𝑘𝑍 ↦ ((𝐹𝑘)‘𝐶))‘𝑛) = ((𝐹𝑛)‘𝐶))
132131adantl 482 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ ((𝐹𝑘)‘𝐶))‘𝑛) = ((𝐹𝑛)‘𝐶))
1335adantr 481 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ 𝑛𝑍) → 𝐶𝑋)
134106, 133ffvelrnd 6321 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝐶) ∈ ℂ)
135132, 134eqeltrd 2698 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ ((𝐹𝑘)‘𝐶))‘𝑛) ∈ ℂ)
136128oveq1d 6625 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)) = (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))
137 eqid 2621 . . . . . . . . . . . . . 14 (𝑘𝑍 ↦ (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))) = (𝑘𝑍 ↦ (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))
138 ovex 6638 . . . . . . . . . . . . . 14 (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)) ∈ V
139136, 137, 138fvmpt 6244 . . . . . . . . . . . . 13 (𝑛𝑍 → ((𝑘𝑍 ↦ (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))‘𝑛) = (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))
140139adantl 482 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))‘𝑛) = (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))
141132oveq1d 6625 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛𝑍) → (((𝑘𝑍 ↦ ((𝐹𝑘)‘𝐶))‘𝑛) − ((𝐹𝑁)‘𝐶)) = (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))
142140, 141eqtr4d 2658 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))‘𝑛) = (((𝑘𝑍 ↦ ((𝐹𝑘)‘𝐶))‘𝑛) − ((𝐹𝑁)‘𝐶)))
14379, 84, 125, 57, 127, 135, 142climsubc1 14309 . . . . . . . . . 10 ((𝜑𝜓) → (𝑘𝑍 ↦ (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))) ⇝ ((𝐺𝐶) − ((𝐹𝑁)‘𝐶)))
14456adantr 481 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝐹𝑁)‘𝑌) ∈ ℂ)
145108, 144subcld 10343 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑛𝑍) → (((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) ∈ ℂ)
146114, 145eqeltrd 2698 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ (((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)))‘𝑛) ∈ ℂ)
14757adantr 481 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝐹𝑁)‘𝐶) ∈ ℂ)
148134, 147subcld 10343 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑛𝑍) → (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)) ∈ ℂ)
149140, 148eqeltrd 2698 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))‘𝑛) ∈ ℂ)
150110, 136oveq12d 6628 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → ((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))) = ((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶))))
151 eqid 2621 . . . . . . . . . . . . 13 (𝑘𝑍 ↦ ((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))) = (𝑘𝑍 ↦ ((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))))
152 ovex 6638 . . . . . . . . . . . . 13 ((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶))) ∈ V
153150, 151, 152fvmpt 6244 . . . . . . . . . . . 12 (𝑛𝑍 → ((𝑘𝑍 ↦ ((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))))‘𝑛) = ((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶))))
154153adantl 482 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ ((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))))‘𝑛) = ((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶))))
155114, 140oveq12d 6628 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑛𝑍) → (((𝑘𝑍 ↦ (((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)))‘𝑛) − ((𝑘𝑍 ↦ (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))‘𝑛)) = ((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶))))
156154, 155eqtr4d 2658 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ ((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))))‘𝑛) = (((𝑘𝑍 ↦ (((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)))‘𝑛) − ((𝑘𝑍 ↦ (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))‘𝑛)))
15779, 84, 117, 119, 143, 146, 149, 156climsub 14305 . . . . . . . . 9 ((𝜑𝜓) → (𝑘𝑍 ↦ ((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))) ⇝ (((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶))))
15895mptex 6446 . . . . . . . . . 10 (𝑘𝑍 ↦ (abs‘((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))))) ∈ V
159158a1i 11 . . . . . . . . 9 ((𝜑𝜓) → (𝑘𝑍 ↦ (abs‘((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))))) ∈ V)
160145, 148subcld 10343 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑛𝑍) → ((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶))) ∈ ℂ)
161154, 160eqeltrd 2698 . . . . . . . . 9 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ ((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))))‘𝑛) ∈ ℂ)
162150fveq2d 6157 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (abs‘((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))) = (abs‘((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))))
163 eqid 2621 . . . . . . . . . . . 12 (𝑘𝑍 ↦ (abs‘((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))))) = (𝑘𝑍 ↦ (abs‘((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))))
164 fvex 6163 . . . . . . . . . . . 12 (abs‘((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))) ∈ V
165162, 163, 164fvmpt 6244 . . . . . . . . . . 11 (𝑛𝑍 → ((𝑘𝑍 ↦ (abs‘((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))))‘𝑛) = (abs‘((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))))
166165adantl 482 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ (abs‘((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))))‘𝑛) = (abs‘((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))))
167154fveq2d 6157 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑛𝑍) → (abs‘((𝑘𝑍 ↦ ((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))))‘𝑛)) = (abs‘((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))))
168166, 167eqtr4d 2658 . . . . . . . . 9 (((𝜑𝜓) ∧ 𝑛𝑍) → ((𝑘𝑍 ↦ (abs‘((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))))‘𝑛) = (abs‘((𝑘𝑍 ↦ ((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))))‘𝑛)))
16979, 157, 159, 84, 161, 168climabs 14275 . . . . . . . 8 ((𝜑𝜓) → (𝑘𝑍 ↦ (abs‘((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶))))) ⇝ (abs‘(((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶)))))
17038abscld 14116 . . . . . . . . . . 11 ((𝜑𝜓) → (abs‘(𝑌𝐶)) ∈ ℝ)
17167, 170remulcld 10021 . . . . . . . . . 10 ((𝜑𝜓) → (((𝑅 / 2) / 2) · (abs‘(𝑌𝐶))) ∈ ℝ)
172171recnd 10019 . . . . . . . . 9 ((𝜑𝜓) → (((𝑅 / 2) / 2) · (abs‘(𝑌𝐶))) ∈ ℂ)
17379eqimss2i 3644 . . . . . . . . . 10 (ℤ𝑀) ⊆ 𝑍
174173, 95climconst2 14220 . . . . . . . . 9 (((((𝑅 / 2) / 2) · (abs‘(𝑌𝐶))) ∈ ℂ ∧ 𝑀 ∈ ℤ) → (𝑍 × {(((𝑅 / 2) / 2) · (abs‘(𝑌𝐶)))}) ⇝ (((𝑅 / 2) / 2) · (abs‘(𝑌𝐶))))
175172, 84, 174syl2anc 692 . . . . . . . 8 ((𝜑𝜓) → (𝑍 × {(((𝑅 / 2) / 2) · (abs‘(𝑌𝐶)))}) ⇝ (((𝑅 / 2) / 2) · (abs‘(𝑌𝐶))))
17679uztrn2 11656 . . . . . . . . . . 11 ((𝑁𝑍𝑛 ∈ (ℤ𝑁)) → 𝑛𝑍)
1778, 176sylan 488 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑛𝑍)
178177, 165syl 17 . . . . . . . . 9 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → ((𝑘𝑍 ↦ (abs‘((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))))‘𝑛) = (abs‘((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))))
179160abscld 14116 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑛𝑍) → (abs‘((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))) ∈ ℝ)
180177, 179syldan 487 . . . . . . . . 9 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (abs‘((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))) ∈ ℝ)
181178, 180eqeltrd 2698 . . . . . . . 8 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → ((𝑘𝑍 ↦ (abs‘((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))))‘𝑛) ∈ ℝ)
182 ovex 6638 . . . . . . . . . . 11 (((𝑅 / 2) / 2) · (abs‘(𝑌𝐶))) ∈ V
183182fvconst2 6429 . . . . . . . . . 10 (𝑛𝑍 → ((𝑍 × {(((𝑅 / 2) / 2) · (abs‘(𝑌𝐶)))})‘𝑛) = (((𝑅 / 2) / 2) · (abs‘(𝑌𝐶))))
184177, 183syl 17 . . . . . . . . 9 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → ((𝑍 × {(((𝑅 / 2) / 2) · (abs‘(𝑌𝐶)))})‘𝑛) = (((𝑅 / 2) / 2) · (abs‘(𝑌𝐶))))
185171adantr 481 . . . . . . . . 9 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (((𝑅 / 2) / 2) · (abs‘(𝑌𝐶))) ∈ ℝ)
186184, 185eqeltrd 2698 . . . . . . . 8 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → ((𝑍 × {(((𝑅 / 2) / 2) · (abs‘(𝑌𝐶)))})‘𝑛) ∈ ℝ)
187177, 106syldan 487 . . . . . . . . . . . . . 14 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐹𝑛):𝑋⟶ℂ)
188 ffn 6007 . . . . . . . . . . . . . 14 ((𝐹𝑛):𝑋⟶ℂ → (𝐹𝑛) Fn 𝑋)
189187, 188syl 17 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐹𝑛) Fn 𝑋)
19055adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐹𝑁):𝑋⟶ℂ)
191 ffn 6007 . . . . . . . . . . . . . 14 ((𝐹𝑁):𝑋⟶ℂ → (𝐹𝑁) Fn 𝑋)
192190, 191syl 17 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐹𝑁) Fn 𝑋)
193 ulmscl 24050 . . . . . . . . . . . . . . 15 ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))(⇝𝑢𝑋)𝐻𝑋 ∈ V)
19419, 193syl 17 . . . . . . . . . . . . . 14 (𝜑𝑋 ∈ V)
195194ad2antrr 761 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑋 ∈ V)
1963adantr 481 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑌𝑋)
197 fnfvof 6871 . . . . . . . . . . . . 13 ((((𝐹𝑛) Fn 𝑋 ∧ (𝐹𝑁) Fn 𝑋) ∧ (𝑋 ∈ V ∧ 𝑌𝑋)) → (((𝐹𝑛) ∘𝑓 − (𝐹𝑁))‘𝑌) = (((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)))
198189, 192, 195, 196, 197syl22anc 1324 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (((𝐹𝑛) ∘𝑓 − (𝐹𝑁))‘𝑌) = (((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)))
1995adantr 481 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝐶𝑋)
200 fnfvof 6871 . . . . . . . . . . . . 13 ((((𝐹𝑛) Fn 𝑋 ∧ (𝐹𝑁) Fn 𝑋) ∧ (𝑋 ∈ V ∧ 𝐶𝑋)) → (((𝐹𝑛) ∘𝑓 − (𝐹𝑁))‘𝐶) = (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))
201189, 192, 195, 199, 200syl22anc 1324 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (((𝐹𝑛) ∘𝑓 − (𝐹𝑁))‘𝐶) = (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))
202198, 201oveq12d 6628 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → ((((𝐹𝑛) ∘𝑓 − (𝐹𝑁))‘𝑌) − (((𝐹𝑛) ∘𝑓 − (𝐹𝑁))‘𝐶)) = ((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶))))
203202fveq2d 6157 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (abs‘((((𝐹𝑛) ∘𝑓 − (𝐹𝑁))‘𝑌) − (((𝐹𝑛) ∘𝑓 − (𝐹𝑁))‘𝐶))) = (abs‘((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))))
20430, 3sseldd 3588 . . . . . . . . . . . . . . . . 17 ((𝜑𝜓) → 𝑌𝑆)
20530, 5sseldd 3588 . . . . . . . . . . . . . . . . 17 ((𝜑𝜓) → 𝐶𝑆)
206204, 205ovresd 6761 . . . . . . . . . . . . . . . 16 ((𝜑𝜓) → (𝑌((abs ∘ − ) ↾ (𝑆 × 𝑆))𝐶) = (𝑌(abs ∘ − )𝐶))
207 eqid 2621 . . . . . . . . . . . . . . . . . 18 (abs ∘ − ) = (abs ∘ − )
208207cnmetdval 22493 . . . . . . . . . . . . . . . . 17 ((𝑌 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝑌(abs ∘ − )𝐶) = (abs‘(𝑌𝐶)))
20936, 37, 208syl2anc 692 . . . . . . . . . . . . . . . 16 ((𝜑𝜓) → (𝑌(abs ∘ − )𝐶) = (abs‘(𝑌𝐶)))
210206, 209eqtrd 2655 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → (𝑌((abs ∘ − ) ↾ (𝑆 × 𝑆))𝐶) = (abs‘(𝑌𝐶)))
211 ulmdvlem1.a . . . . . . . . . . . . . . 15 ((𝜑𝜓) → (abs‘(𝑌𝐶)) < 𝑈)
212210, 211eqbrtrd 4640 . . . . . . . . . . . . . 14 ((𝜑𝜓) → (𝑌((abs ∘ − ) ↾ (𝑆 × 𝑆))𝐶) < 𝑈)
213 cnxmet 22495 . . . . . . . . . . . . . . . 16 (abs ∘ − ) ∈ (∞Met‘ℂ)
214 xmetres2 22085 . . . . . . . . . . . . . . . 16 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑆 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆))
215213, 34, 214sylancr 694 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆))
216 ulmdvlem1.u . . . . . . . . . . . . . . . 16 ((𝜑𝜓) → 𝑈 ∈ ℝ+)
217216rpxrd 11824 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → 𝑈 ∈ ℝ*)
218 elbl3 22116 . . . . . . . . . . . . . . 15 (((((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆) ∧ 𝑈 ∈ ℝ*) ∧ (𝐶𝑆𝑌𝑆)) → (𝑌 ∈ (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈) ↔ (𝑌((abs ∘ − ) ↾ (𝑆 × 𝑆))𝐶) < 𝑈))
219215, 217, 205, 204, 218syl22anc 1324 . . . . . . . . . . . . . 14 ((𝜑𝜓) → (𝑌 ∈ (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈) ↔ (𝑌((abs ∘ − ) ↾ (𝑆 × 𝑆))𝐶) < 𝑈))
220212, 219mpbird 247 . . . . . . . . . . . . 13 ((𝜑𝜓) → 𝑌 ∈ (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈))
221220adantr 481 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑌 ∈ (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈))
222 blcntr 22137 . . . . . . . . . . . . . 14 ((((abs ∘ − ) ↾ (𝑆 × 𝑆)) ∈ (∞Met‘𝑆) ∧ 𝐶𝑆𝑈 ∈ ℝ+) → 𝐶 ∈ (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈))
223215, 205, 216, 222syl3anc 1323 . . . . . . . . . . . . 13 ((𝜑𝜓) → 𝐶 ∈ (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈))
224223adantr 481 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝐶 ∈ (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈))
225221, 224jca 554 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑌 ∈ (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈) ∧ 𝐶 ∈ (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈)))
22631ad2antrr 761 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑆 ∈ {ℝ, ℂ})
227 eqid 2621 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ (𝑆 × 𝑆)) = ((abs ∘ − ) ↾ (𝑆 × 𝑆))
22830adantr 481 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑋𝑆)
229187ffvelrnda 6320 . . . . . . . . . . . . . . 15 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → ((𝐹𝑛)‘𝑦) ∈ ℂ)
230190ffvelrnda 6320 . . . . . . . . . . . . . . 15 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → ((𝐹𝑁)‘𝑦) ∈ ℂ)
231229, 230subcld 10343 . . . . . . . . . . . . . 14 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → (((𝐹𝑛)‘𝑦) − ((𝐹𝑁)‘𝑦)) ∈ ℂ)
232 eqid 2621 . . . . . . . . . . . . . 14 (𝑦𝑋 ↦ (((𝐹𝑛)‘𝑦) − ((𝐹𝑁)‘𝑦))) = (𝑦𝑋 ↦ (((𝐹𝑛)‘𝑦) − ((𝐹𝑁)‘𝑦)))
233231, 232fmptd 6346 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑦𝑋 ↦ (((𝐹𝑛)‘𝑦) − ((𝐹𝑁)‘𝑦))):𝑋⟶ℂ)
234 fvex 6163 . . . . . . . . . . . . . . . 16 ((𝐹𝑛)‘𝑦) ∈ V
235234a1i 11 . . . . . . . . . . . . . . 15 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → ((𝐹𝑛)‘𝑦) ∈ V)
236 fvex 6163 . . . . . . . . . . . . . . . 16 ((𝐹𝑁)‘𝑦) ∈ V
237236a1i 11 . . . . . . . . . . . . . . 15 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → ((𝐹𝑁)‘𝑦) ∈ V)
238187feqmptd 6211 . . . . . . . . . . . . . . 15 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐹𝑛) = (𝑦𝑋 ↦ ((𝐹𝑛)‘𝑦)))
239190feqmptd 6211 . . . . . . . . . . . . . . 15 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐹𝑁) = (𝑦𝑋 ↦ ((𝐹𝑁)‘𝑦)))
240195, 235, 237, 238, 239offval2 6874 . . . . . . . . . . . . . 14 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → ((𝐹𝑛) ∘𝑓 − (𝐹𝑁)) = (𝑦𝑋 ↦ (((𝐹𝑛)‘𝑦) − ((𝐹𝑁)‘𝑦))))
241240feq1d 5992 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (((𝐹𝑛) ∘𝑓 − (𝐹𝑁)):𝑋⟶ℂ ↔ (𝑦𝑋 ↦ (((𝐹𝑛)‘𝑦) − ((𝐹𝑁)‘𝑦))):𝑋⟶ℂ))
242233, 241mpbird 247 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → ((𝐹𝑛) ∘𝑓 − (𝐹𝑁)):𝑋⟶ℂ)
243205adantr 481 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝐶𝑆)
244217adantr 481 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑈 ∈ ℝ*)
245 eqid 2621 . . . . . . . . . . . 12 (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈) = (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈)
246 ulmdvlem1.b . . . . . . . . . . . . . 14 ((𝜑𝜓) → (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈) ⊆ 𝑋)
247246adantr 481 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈) ⊆ 𝑋)
248240oveq2d 6626 . . . . . . . . . . . . . . . 16 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑆 D ((𝐹𝑛) ∘𝑓 − (𝐹𝑁))) = (𝑆 D (𝑦𝑋 ↦ (((𝐹𝑛)‘𝑦) − ((𝐹𝑁)‘𝑦)))))
249 fvex 6163 . . . . . . . . . . . . . . . . . 18 ((𝑆 D (𝐹𝑛))‘𝑦) ∈ V
250249a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → ((𝑆 D (𝐹𝑛))‘𝑦) ∈ V)
251238oveq2d 6626 . . . . . . . . . . . . . . . . . 18 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑆 D (𝐹𝑛)) = (𝑆 D (𝑦𝑋 ↦ ((𝐹𝑛)‘𝑦))))
25298oveq2d 6626 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑛 → (𝑆 D (𝐹𝑘)) = (𝑆 D (𝐹𝑛)))
253 ovex 6638 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑆 D (𝐹𝑛)) ∈ V
254252, 11, 253fvmpt 6244 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛𝑍 → ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑛) = (𝑆 D (𝐹𝑛)))
255177, 254syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑛) = (𝑆 D (𝐹𝑛)))
25621ad2antrr 761 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑘𝑍 ↦ (𝑆 D (𝐹𝑘))):𝑍⟶(ℂ ↑𝑚 𝑋))
257256, 177ffvelrnd 6321 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → ((𝑘𝑍 ↦ (𝑆 D (𝐹𝑘)))‘𝑛) ∈ (ℂ ↑𝑚 𝑋))
258255, 257eqeltrrd 2699 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑆 D (𝐹𝑛)) ∈ (ℂ ↑𝑚 𝑋))
259 elmapi 7830 . . . . . . . . . . . . . . . . . . . 20 ((𝑆 D (𝐹𝑛)) ∈ (ℂ ↑𝑚 𝑋) → (𝑆 D (𝐹𝑛)):𝑋⟶ℂ)
260258, 259syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑆 D (𝐹𝑛)):𝑋⟶ℂ)
261260feqmptd 6211 . . . . . . . . . . . . . . . . . 18 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑆 D (𝐹𝑛)) = (𝑦𝑋 ↦ ((𝑆 D (𝐹𝑛))‘𝑦)))
262251, 261eqtr3d 2657 . . . . . . . . . . . . . . . . 17 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑆 D (𝑦𝑋 ↦ ((𝐹𝑛)‘𝑦))) = (𝑦𝑋 ↦ ((𝑆 D (𝐹𝑛))‘𝑦)))
263 fvex 6163 . . . . . . . . . . . . . . . . . 18 ((𝑆 D (𝐹𝑁))‘𝑦) ∈ V
264263a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → ((𝑆 D (𝐹𝑁))‘𝑦) ∈ V)
265239oveq2d 6626 . . . . . . . . . . . . . . . . . 18 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑆 D (𝐹𝑁)) = (𝑆 D (𝑦𝑋 ↦ ((𝐹𝑁)‘𝑦))))
26626adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑆 D (𝐹𝑁)):𝑋⟶ℂ)
267266feqmptd 6211 . . . . . . . . . . . . . . . . . 18 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑆 D (𝐹𝑁)) = (𝑦𝑋 ↦ ((𝑆 D (𝐹𝑁))‘𝑦)))
268265, 267eqtr3d 2657 . . . . . . . . . . . . . . . . 17 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑆 D (𝑦𝑋 ↦ ((𝐹𝑁)‘𝑦))) = (𝑦𝑋 ↦ ((𝑆 D (𝐹𝑁))‘𝑦)))
269226, 229, 250, 262, 230, 264, 268dvmptsub 23649 . . . . . . . . . . . . . . . 16 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑆 D (𝑦𝑋 ↦ (((𝐹𝑛)‘𝑦) − ((𝐹𝑁)‘𝑦)))) = (𝑦𝑋 ↦ (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦))))
270248, 269eqtrd 2655 . . . . . . . . . . . . . . 15 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝑆 D ((𝐹𝑛) ∘𝑓 − (𝐹𝑁))) = (𝑦𝑋 ↦ (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦))))
271270dmeqd 5291 . . . . . . . . . . . . . 14 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → dom (𝑆 D ((𝐹𝑛) ∘𝑓 − (𝐹𝑁))) = dom (𝑦𝑋 ↦ (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦))))
272 ovex 6638 . . . . . . . . . . . . . . 15 (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦)) ∈ V
273 eqid 2621 . . . . . . . . . . . . . . 15 (𝑦𝑋 ↦ (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦))) = (𝑦𝑋 ↦ (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦)))
274272, 273dmmpti 5985 . . . . . . . . . . . . . 14 dom (𝑦𝑋 ↦ (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦))) = 𝑋
275271, 274syl6eq 2671 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → dom (𝑆 D ((𝐹𝑛) ∘𝑓 − (𝐹𝑁))) = 𝑋)
276247, 275sseqtr4d 3626 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈) ⊆ dom (𝑆 D ((𝐹𝑛) ∘𝑓 − (𝐹𝑁))))
27767adantr 481 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → ((𝑅 / 2) / 2) ∈ ℝ)
278247sselda 3587 . . . . . . . . . . . . 13 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦 ∈ (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈)) → 𝑦𝑋)
279270fveq1d 6155 . . . . . . . . . . . . . . . 16 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → ((𝑆 D ((𝐹𝑛) ∘𝑓 − (𝐹𝑁)))‘𝑦) = ((𝑦𝑋 ↦ (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦)))‘𝑦))
280273fvmpt2 6253 . . . . . . . . . . . . . . . . 17 ((𝑦𝑋 ∧ (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦)) ∈ V) → ((𝑦𝑋 ↦ (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦)))‘𝑦) = (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦)))
281272, 280mpan2 706 . . . . . . . . . . . . . . . 16 (𝑦𝑋 → ((𝑦𝑋 ↦ (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦)))‘𝑦) = (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦)))
282279, 281sylan9eq 2675 . . . . . . . . . . . . . . 15 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → ((𝑆 D ((𝐹𝑛) ∘𝑓 − (𝐹𝑁)))‘𝑦) = (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦)))
283282fveq2d 6157 . . . . . . . . . . . . . 14 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → (abs‘((𝑆 D ((𝐹𝑛) ∘𝑓 − (𝐹𝑁)))‘𝑦)) = (abs‘(((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦))))
284272a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦)) ∈ V)
285226, 231, 284, 269dvmptcl 23641 . . . . . . . . . . . . . . . 16 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → (((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦)) ∈ ℂ)
286285abscld 14116 . . . . . . . . . . . . . . 15 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → (abs‘(((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦))) ∈ ℝ)
28767ad2antrr 761 . . . . . . . . . . . . . . 15 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → ((𝑅 / 2) / 2) ∈ ℝ)
288260ffvelrnda 6320 . . . . . . . . . . . . . . . . 17 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → ((𝑆 D (𝐹𝑛))‘𝑦) ∈ ℂ)
289266ffvelrnda 6320 . . . . . . . . . . . . . . . . 17 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → ((𝑆 D (𝐹𝑁))‘𝑦) ∈ ℂ)
290288, 289abssubd 14133 . . . . . . . . . . . . . . . 16 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → (abs‘(((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦))) = (abs‘(((𝑆 D (𝐹𝑁))‘𝑦) − ((𝑆 D (𝐹𝑛))‘𝑦))))
291 ulmdvlem1.1 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜓) → ∀𝑚 ∈ (ℤ𝑁)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑅 / 2) / 2))
292 fveq2 6153 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
293292oveq2d 6626 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 = 𝑛 → (𝑆 D (𝐹𝑚)) = (𝑆 D (𝐹𝑛)))
294293fveq1d 6155 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = 𝑛 → ((𝑆 D (𝐹𝑚))‘𝑥) = ((𝑆 D (𝐹𝑛))‘𝑥))
295294oveq2d 6626 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑛 → (((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥)) = (((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑛))‘𝑥)))
296295fveq2d 6157 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑛 → (abs‘(((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) = (abs‘(((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑛))‘𝑥))))
297296breq1d 4628 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑛 → ((abs‘(((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑅 / 2) / 2) ↔ (abs‘(((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑛))‘𝑥))) < ((𝑅 / 2) / 2)))
298297ralbidv 2981 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑛 → (∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑅 / 2) / 2) ↔ ∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑛))‘𝑥))) < ((𝑅 / 2) / 2)))
299298rspccva 3297 . . . . . . . . . . . . . . . . . 18 ((∀𝑚 ∈ (ℤ𝑁)∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑚))‘𝑥))) < ((𝑅 / 2) / 2) ∧ 𝑛 ∈ (ℤ𝑁)) → ∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑛))‘𝑥))) < ((𝑅 / 2) / 2))
300291, 299sylan 488 . . . . . . . . . . . . . . . . 17 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → ∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑛))‘𝑥))) < ((𝑅 / 2) / 2))
301 fveq2 6153 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑦 → ((𝑆 D (𝐹𝑁))‘𝑥) = ((𝑆 D (𝐹𝑁))‘𝑦))
302 fveq2 6153 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑦 → ((𝑆 D (𝐹𝑛))‘𝑥) = ((𝑆 D (𝐹𝑛))‘𝑦))
303301, 302oveq12d 6628 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → (((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑛))‘𝑥)) = (((𝑆 D (𝐹𝑁))‘𝑦) − ((𝑆 D (𝐹𝑛))‘𝑦)))
304303fveq2d 6157 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → (abs‘(((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑛))‘𝑥))) = (abs‘(((𝑆 D (𝐹𝑁))‘𝑦) − ((𝑆 D (𝐹𝑛))‘𝑦))))
305304breq1d 4628 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → ((abs‘(((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑛))‘𝑥))) < ((𝑅 / 2) / 2) ↔ (abs‘(((𝑆 D (𝐹𝑁))‘𝑦) − ((𝑆 D (𝐹𝑛))‘𝑦))) < ((𝑅 / 2) / 2)))
306305rspccva 3297 . . . . . . . . . . . . . . . . 17 ((∀𝑥𝑋 (abs‘(((𝑆 D (𝐹𝑁))‘𝑥) − ((𝑆 D (𝐹𝑛))‘𝑥))) < ((𝑅 / 2) / 2) ∧ 𝑦𝑋) → (abs‘(((𝑆 D (𝐹𝑁))‘𝑦) − ((𝑆 D (𝐹𝑛))‘𝑦))) < ((𝑅 / 2) / 2))
307300, 306sylan 488 . . . . . . . . . . . . . . . 16 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → (abs‘(((𝑆 D (𝐹𝑁))‘𝑦) − ((𝑆 D (𝐹𝑛))‘𝑦))) < ((𝑅 / 2) / 2))
308290, 307eqbrtrd 4640 . . . . . . . . . . . . . . 15 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → (abs‘(((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦))) < ((𝑅 / 2) / 2))
309286, 287, 308ltled 10136 . . . . . . . . . . . . . 14 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → (abs‘(((𝑆 D (𝐹𝑛))‘𝑦) − ((𝑆 D (𝐹𝑁))‘𝑦))) ≤ ((𝑅 / 2) / 2))
310283, 309eqbrtrd 4640 . . . . . . . . . . . . 13 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦𝑋) → (abs‘((𝑆 D ((𝐹𝑛) ∘𝑓 − (𝐹𝑁)))‘𝑦)) ≤ ((𝑅 / 2) / 2))
311278, 310syldan 487 . . . . . . . . . . . 12 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ 𝑦 ∈ (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈)) → (abs‘((𝑆 D ((𝐹𝑛) ∘𝑓 − (𝐹𝑁)))‘𝑦)) ≤ ((𝑅 / 2) / 2))
312226, 227, 228, 242, 243, 244, 245, 276, 277, 311dvlip2 23675 . . . . . . . . . . 11 ((((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) ∧ (𝑌 ∈ (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈) ∧ 𝐶 ∈ (𝐶(ball‘((abs ∘ − ) ↾ (𝑆 × 𝑆)))𝑈))) → (abs‘((((𝐹𝑛) ∘𝑓 − (𝐹𝑁))‘𝑌) − (((𝐹𝑛) ∘𝑓 − (𝐹𝑁))‘𝐶))) ≤ (((𝑅 / 2) / 2) · (abs‘(𝑌𝐶))))
313225, 312mpdan 701 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (abs‘((((𝐹𝑛) ∘𝑓 − (𝐹𝑁))‘𝑌) − (((𝐹𝑛) ∘𝑓 − (𝐹𝑁))‘𝐶))) ≤ (((𝑅 / 2) / 2) · (abs‘(𝑌𝐶))))
314203, 313eqbrtrrd 4642 . . . . . . . . 9 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → (abs‘((((𝐹𝑛)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑛)‘𝐶) − ((𝐹𝑁)‘𝐶)))) ≤ (((𝑅 / 2) / 2) · (abs‘(𝑌𝐶))))
315314, 178, 1843brtr4d 4650 . . . . . . . 8 (((𝜑𝜓) ∧ 𝑛 ∈ (ℤ𝑁)) → ((𝑘𝑍 ↦ (abs‘((((𝐹𝑘)‘𝑌) − ((𝐹𝑁)‘𝑌)) − (((𝐹𝑘)‘𝐶) − ((𝐹𝑁)‘𝐶)))))‘𝑛) ≤ ((𝑍 × {(((𝑅 / 2) / 2) · (abs‘(𝑌𝐶)))})‘𝑛))
31678, 82, 169, 175, 181, 186, 315climle 14311 . . . . . . 7 ((𝜑𝜓) → (abs‘(((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶)))) ≤ (((𝑅 / 2) / 2) · (abs‘(𝑌𝐶))))
31775abscld 14116 . . . . . . . 8 ((𝜑𝜓) → (abs‘(((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶)))) ∈ ℝ)
31838, 40absrpcld 14128 . . . . . . . 8 ((𝜑𝜓) → (abs‘(𝑌𝐶)) ∈ ℝ+)
319317, 67, 318ledivmul2d 11877 . . . . . . 7 ((𝜑𝜓) → (((abs‘(((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶)))) / (abs‘(𝑌𝐶))) ≤ ((𝑅 / 2) / 2) ↔ (abs‘(((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶)))) ≤ (((𝑅 / 2) / 2) · (abs‘(𝑌𝐶)))))
320316, 319mpbird 247 . . . . . 6 ((𝜑𝜓) → ((abs‘(((𝐺𝑌) − ((𝐹𝑁)‘𝑌)) − ((𝐺𝐶) − ((𝐹𝑁)‘𝐶)))) / (abs‘(𝑌𝐶))) ≤ ((𝑅 / 2) / 2))
32177, 320eqbrtrd 4640 . . . . 5 ((𝜑𝜓) → (abs‘((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)))) ≤ ((𝑅 / 2) / 2))
322216rpred 11823 . . . . . . 7 ((𝜑𝜓) → 𝑈 ∈ ℝ)
323 ulmdvlem1.v . . . . . . . 8 ((𝜑𝜓) → 𝑊 ∈ ℝ+)
324323rpred 11823 . . . . . . 7 ((𝜑𝜓) → 𝑊 ∈ ℝ)
325 ulmdvlem1.l . . . . . . 7 ((𝜑𝜓) → 𝑈 < 𝑊)
326170, 322, 324, 211, 325lttrd 10149 . . . . . 6 ((𝜑𝜓) → (abs‘(𝑌𝐶)) < 𝑊)
327 ulmdvlem1.4 . . . . . 6 ((𝜑𝜓) → ((abs‘(𝑌𝐶)) < 𝑊 → (abs‘(((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)) − ((𝑆 D (𝐹𝑁))‘𝐶))) < ((𝑅 / 2) / 2)))
328326, 327mpd 15 . . . . 5 ((𝜑𝜓) → (abs‘(((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)) − ((𝑆 D (𝐹𝑁))‘𝐶))) < ((𝑅 / 2) / 2))
32961, 63, 67, 67, 321, 328leltaddd 10600 . . . 4 ((𝜑𝜓) → ((abs‘((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)))) + (abs‘(((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)) − ((𝑆 D (𝐹𝑁))‘𝐶)))) < (((𝑅 / 2) / 2) + ((𝑅 / 2) / 2)))
33065recnd 10019 . . . . 5 ((𝜑𝜓) → (𝑅 / 2) ∈ ℂ)
3313302halvesd 11229 . . . 4 ((𝜑𝜓) → (((𝑅 / 2) / 2) + ((𝑅 / 2) / 2)) = (𝑅 / 2))
332329, 331breqtrd 4644 . . 3 ((𝜑𝜓) → ((abs‘((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)))) + (abs‘(((((𝐹𝑁)‘𝑌) − ((𝐹𝑁)‘𝐶)) / (𝑌𝐶)) − ((𝑆 D (𝐹𝑁))‘𝐶)))) < (𝑅 / 2))
33350, 64, 65, 66, 332lelttrd 10146 . 2 ((𝜑𝜓) → (abs‘((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − ((𝑆 D (𝐹𝑁))‘𝐶))) < (𝑅 / 2))
334 ulmdvlem1.2 . 2 ((𝜑𝜓) → (abs‘(((𝑆 D (𝐹𝑁))‘𝐶) − (𝐻𝐶))) < (𝑅 / 2))
33541, 45, 46, 48, 333, 334abs3lemd 14141 1 ((𝜑𝜓) → (abs‘((((𝐺𝑌) − (𝐺𝐶)) / (𝑌𝐶)) − (𝐻𝐶))) < 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790  wral 2907  Vcvv 3189  wss 3559  {csn 4153  {cpr 4155   class class class wbr 4618  cmpt 4678   × cxp 5077  dom cdm 5079  cres 5081  ccom 5083   Fn wfn 5847  wf 5848  cfv 5852  (class class class)co 6610  𝑓 cof 6855  𝑚 cmap 7809  cc 9885  cr 9886   + caddc 9890   · cmul 9892  *cxr 10024   < clt 10025  cle 10026  cmin 10217   / cdiv 10635  2c2 11021  cz 11328  cuz 11638  +crp 11783  abscabs 13915  cli 14156  ∞Metcxmt 19659  ballcbl 19661   D cdv 23546  𝑢culm 24047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8489  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965  ax-addf 9966  ax-mulf 9967
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-ixp 7860  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-fsupp 8227  df-fi 8268  df-sup 8299  df-inf 8300  df-oi 8366  df-card 8716  df-cda 8941  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-4 11032  df-5 11033  df-6 11034  df-7 11035  df-8 11036  df-9 11037  df-n0 11244  df-z 11329  df-dec 11445  df-uz 11639  df-q 11740  df-rp 11784  df-xneg 11897  df-xadd 11898  df-xmul 11899  df-ioo 12128  df-ico 12130  df-icc 12131  df-fz 12276  df-fzo 12414  df-fl 12540  df-seq 12749  df-exp 12808  df-hash 13065  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-clim 14160  df-rlim 14161  df-struct 15790  df-ndx 15791  df-slot 15792  df-base 15793  df-sets 15794  df-ress 15795  df-plusg 15882  df-mulr 15883  df-starv 15884  df-sca 15885  df-vsca 15886  df-ip 15887  df-tset 15888  df-ple 15889  df-ds 15892  df-unif 15893  df-hom 15894  df-cco 15895  df-rest 16011  df-topn 16012  df-0g 16030  df-gsum 16031  df-topgen 16032  df-pt 16033  df-prds 16036  df-xrs 16090  df-qtop 16095  df-imas 16096  df-xps 16098  df-mre 16174  df-mrc 16175  df-acs 16177  df-mgm 17170  df-sgrp 17212  df-mnd 17223  df-submnd 17264  df-mulg 17469  df-cntz 17678  df-cmn 18123  df-psmet 19666  df-xmet 19667  df-met 19668  df-bl 19669  df-mopn 19670  df-fbas 19671  df-fg 19672  df-cnfld 19675  df-top 20627  df-topon 20644  df-topsp 20657  df-bases 20670  df-cld 20742  df-ntr 20743  df-cls 20744  df-nei 20821  df-lp 20859  df-perf 20860  df-cn 20950  df-cnp 20951  df-haus 21038  df-cmp 21109  df-tx 21284  df-hmeo 21477  df-fil 21569  df-fm 21661  df-flim 21662  df-flf 21663  df-xms 22044  df-ms 22045  df-tms 22046  df-cncf 22600  df-limc 23549  df-dv 23550  df-ulm 24048
This theorem is referenced by:  ulmdvlem3  24073
  Copyright terms: Public domain W3C validator