MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnflduss Structured version   Visualization version   GIF version

Theorem cnflduss 23060
Description: The uniform structure of the complex numbers. (Contributed by Thierry Arnoux, 17-Dec-2017.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Hypothesis
Ref Expression
cnflduss.1 𝑈 = (UnifSt‘ℂfld)
Assertion
Ref Expression
cnflduss 𝑈 = (metUnif‘(abs ∘ − ))

Proof of Theorem cnflduss
StepHypRef Expression
1 cnflduss.1 . 2 𝑈 = (UnifSt‘ℂfld)
2 0cn 9976 . . . . . . 7 0 ∈ ℂ
32ne0ii 3899 . . . . . 6 ℂ ≠ ∅
4 cnxmet 22486 . . . . . . 7 (abs ∘ − ) ∈ (∞Met‘ℂ)
5 xmetpsmet 22063 . . . . . . 7 ((abs ∘ − ) ∈ (∞Met‘ℂ) → (abs ∘ − ) ∈ (PsMet‘ℂ))
64, 5ax-mp 5 . . . . . 6 (abs ∘ − ) ∈ (PsMet‘ℂ)
7 metuust 22275 . . . . . 6 ((ℂ ≠ ∅ ∧ (abs ∘ − ) ∈ (PsMet‘ℂ)) → (metUnif‘(abs ∘ − )) ∈ (UnifOn‘ℂ))
83, 6, 7mp2an 707 . . . . 5 (metUnif‘(abs ∘ − )) ∈ (UnifOn‘ℂ)
9 ustuni 21940 . . . . 5 ((metUnif‘(abs ∘ − )) ∈ (UnifOn‘ℂ) → (metUnif‘(abs ∘ − )) = (ℂ × ℂ))
108, 9ax-mp 5 . . . 4 (metUnif‘(abs ∘ − )) = (ℂ × ℂ)
1110eqcomi 2630 . . 3 (ℂ × ℂ) = (metUnif‘(abs ∘ − ))
12 cnfldbas 19669 . . . 4 ℂ = (Base‘ℂfld)
13 cnfldunif 19676 . . . 4 (metUnif‘(abs ∘ − )) = (UnifSet‘ℂfld)
1412, 13ussid 21974 . . 3 ((ℂ × ℂ) = (metUnif‘(abs ∘ − )) → (metUnif‘(abs ∘ − )) = (UnifSt‘ℂfld))
1511, 14ax-mp 5 . 2 (metUnif‘(abs ∘ − )) = (UnifSt‘ℂfld)
161, 15eqtr4i 2646 1 𝑈 = (metUnif‘(abs ∘ − ))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1480  wcel 1987  wne 2790  c0 3891   cuni 4402   × cxp 5072  ccom 5078  cfv 5847  cc 9878  0cc0 9880  cmin 10210  abscabs 13908  PsMetcpsmet 19649  ∞Metcxmt 19650  metUnifcmetu 19656  fldccnfld 19665  UnifOncust 21913  UnifStcuss 21967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ico 12123  df-fz 12269  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-plusg 15875  df-mulr 15876  df-starv 15877  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-rest 16004  df-psmet 19657  df-xmet 19658  df-met 19659  df-fbas 19662  df-fg 19663  df-metu 19664  df-cnfld 19666  df-fil 21560  df-ust 21914  df-uss 21970
This theorem is referenced by:  cnfldcusp  23061  reust  23077  qqhucn  29815  cnrrext  29833
  Copyright terms: Public domain W3C validator