MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnflduss Structured version   Visualization version   GIF version

Theorem cnflduss 23959
Description: The uniform structure of the complex numbers. (Contributed by Thierry Arnoux, 17-Dec-2017.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Hypothesis
Ref Expression
cnflduss.1 𝑈 = (UnifSt‘ℂfld)
Assertion
Ref Expression
cnflduss 𝑈 = (metUnif‘(abs ∘ − ))

Proof of Theorem cnflduss
StepHypRef Expression
1 cnflduss.1 . 2 𝑈 = (UnifSt‘ℂfld)
2 0cn 10633 . . . . . . 7 0 ∈ ℂ
32ne0ii 4303 . . . . . 6 ℂ ≠ ∅
4 cnxmet 23381 . . . . . . 7 (abs ∘ − ) ∈ (∞Met‘ℂ)
5 xmetpsmet 22958 . . . . . . 7 ((abs ∘ − ) ∈ (∞Met‘ℂ) → (abs ∘ − ) ∈ (PsMet‘ℂ))
64, 5ax-mp 5 . . . . . 6 (abs ∘ − ) ∈ (PsMet‘ℂ)
7 metuust 23170 . . . . . 6 ((ℂ ≠ ∅ ∧ (abs ∘ − ) ∈ (PsMet‘ℂ)) → (metUnif‘(abs ∘ − )) ∈ (UnifOn‘ℂ))
83, 6, 7mp2an 690 . . . . 5 (metUnif‘(abs ∘ − )) ∈ (UnifOn‘ℂ)
9 ustuni 22835 . . . . 5 ((metUnif‘(abs ∘ − )) ∈ (UnifOn‘ℂ) → (metUnif‘(abs ∘ − )) = (ℂ × ℂ))
108, 9ax-mp 5 . . . 4 (metUnif‘(abs ∘ − )) = (ℂ × ℂ)
1110eqcomi 2830 . . 3 (ℂ × ℂ) = (metUnif‘(abs ∘ − ))
12 cnfldbas 20549 . . . 4 ℂ = (Base‘ℂfld)
13 cnfldunif 20556 . . . 4 (metUnif‘(abs ∘ − )) = (UnifSet‘ℂfld)
1412, 13ussid 22869 . . 3 ((ℂ × ℂ) = (metUnif‘(abs ∘ − )) → (metUnif‘(abs ∘ − )) = (UnifSt‘ℂfld))
1511, 14ax-mp 5 . 2 (metUnif‘(abs ∘ − )) = (UnifSt‘ℂfld)
161, 15eqtr4i 2847 1 𝑈 = (metUnif‘(abs ∘ − ))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2114  wne 3016  c0 4291   cuni 4838   × cxp 5553  ccom 5559  cfv 6355  cc 10535  0cc0 10537  cmin 10870  abscabs 14593  PsMetcpsmet 20529  ∞Metcxmet 20530  metUnifcmetu 20536  fldccnfld 20545  UnifOncust 22808  UnifStcuss 22862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ico 12745  df-fz 12894  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-plusg 16578  df-mulr 16579  df-starv 16580  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-rest 16696  df-psmet 20537  df-xmet 20538  df-met 20539  df-fbas 20542  df-fg 20543  df-metu 20544  df-cnfld 20546  df-fil 22454  df-ust 22809  df-uss 22865
This theorem is referenced by:  cnfldcusp  23960  reust  23984  qqhucn  31233  cnrrext  31251
  Copyright terms: Public domain W3C validator