MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comet Structured version   Visualization version   GIF version

Theorem comet 23123
Description: The composition of an extended metric with a monotonic subadditive function is an extended metric. (Contributed by Mario Carneiro, 21-Mar-2015.)
Hypotheses
Ref Expression
comet.1 (𝜑𝐷 ∈ (∞Met‘𝑋))
comet.2 (𝜑𝐹:(0[,]+∞)⟶ℝ*)
comet.3 ((𝜑𝑥 ∈ (0[,]+∞)) → ((𝐹𝑥) = 0 ↔ 𝑥 = 0))
comet.4 ((𝜑 ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞))) → (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
comet.5 ((𝜑 ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞))) → (𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹𝑥) +𝑒 (𝐹𝑦)))
Assertion
Ref Expression
comet (𝜑 → (𝐹𝐷) ∈ (∞Met‘𝑋))
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝐹,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑋(𝑥,𝑦)

Proof of Theorem comet
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 comet.1 . . 3 (𝜑𝐷 ∈ (∞Met‘𝑋))
21elfvexd 6704 . 2 (𝜑𝑋 ∈ V)
3 comet.2 . . 3 (𝜑𝐹:(0[,]+∞)⟶ℝ*)
4 xmetf 22939 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
51, 4syl 17 . . . . 5 (𝜑𝐷:(𝑋 × 𝑋)⟶ℝ*)
65ffnd 6515 . . . 4 (𝜑𝐷 Fn (𝑋 × 𝑋))
7 xmetcl 22941 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑎𝑋𝑏𝑋) → (𝑎𝐷𝑏) ∈ ℝ*)
8 xmetge0 22954 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑎𝑋𝑏𝑋) → 0 ≤ (𝑎𝐷𝑏))
9 elxrge0 12846 . . . . . . . 8 ((𝑎𝐷𝑏) ∈ (0[,]+∞) ↔ ((𝑎𝐷𝑏) ∈ ℝ* ∧ 0 ≤ (𝑎𝐷𝑏)))
107, 8, 9sylanbrc 585 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑎𝑋𝑏𝑋) → (𝑎𝐷𝑏) ∈ (0[,]+∞))
11103expb 1116 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) → (𝑎𝐷𝑏) ∈ (0[,]+∞))
121, 11sylan 582 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → (𝑎𝐷𝑏) ∈ (0[,]+∞))
1312ralrimivva 3191 . . . 4 (𝜑 → ∀𝑎𝑋𝑏𝑋 (𝑎𝐷𝑏) ∈ (0[,]+∞))
14 ffnov 7278 . . . 4 (𝐷:(𝑋 × 𝑋)⟶(0[,]+∞) ↔ (𝐷 Fn (𝑋 × 𝑋) ∧ ∀𝑎𝑋𝑏𝑋 (𝑎𝐷𝑏) ∈ (0[,]+∞)))
156, 13, 14sylanbrc 585 . . 3 (𝜑𝐷:(𝑋 × 𝑋)⟶(0[,]+∞))
16 fco 6531 . . 3 ((𝐹:(0[,]+∞)⟶ℝ*𝐷:(𝑋 × 𝑋)⟶(0[,]+∞)) → (𝐹𝐷):(𝑋 × 𝑋)⟶ℝ*)
173, 15, 16syl2anc 586 . 2 (𝜑 → (𝐹𝐷):(𝑋 × 𝑋)⟶ℝ*)
18 opelxpi 5592 . . . . . 6 ((𝑎𝑋𝑏𝑋) → ⟨𝑎, 𝑏⟩ ∈ (𝑋 × 𝑋))
19 fvco3 6760 . . . . . 6 ((𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ⟨𝑎, 𝑏⟩ ∈ (𝑋 × 𝑋)) → ((𝐹𝐷)‘⟨𝑎, 𝑏⟩) = (𝐹‘(𝐷‘⟨𝑎, 𝑏⟩)))
205, 18, 19syl2an 597 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → ((𝐹𝐷)‘⟨𝑎, 𝑏⟩) = (𝐹‘(𝐷‘⟨𝑎, 𝑏⟩)))
21 df-ov 7159 . . . . 5 (𝑎(𝐹𝐷)𝑏) = ((𝐹𝐷)‘⟨𝑎, 𝑏⟩)
22 df-ov 7159 . . . . . 6 (𝑎𝐷𝑏) = (𝐷‘⟨𝑎, 𝑏⟩)
2322fveq2i 6673 . . . . 5 (𝐹‘(𝑎𝐷𝑏)) = (𝐹‘(𝐷‘⟨𝑎, 𝑏⟩))
2420, 21, 233eqtr4g 2881 . . . 4 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → (𝑎(𝐹𝐷)𝑏) = (𝐹‘(𝑎𝐷𝑏)))
2524eqeq1d 2823 . . 3 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → ((𝑎(𝐹𝐷)𝑏) = 0 ↔ (𝐹‘(𝑎𝐷𝑏)) = 0))
26 fveq2 6670 . . . . . 6 (𝑥 = (𝑎𝐷𝑏) → (𝐹𝑥) = (𝐹‘(𝑎𝐷𝑏)))
2726eqeq1d 2823 . . . . 5 (𝑥 = (𝑎𝐷𝑏) → ((𝐹𝑥) = 0 ↔ (𝐹‘(𝑎𝐷𝑏)) = 0))
28 eqeq1 2825 . . . . 5 (𝑥 = (𝑎𝐷𝑏) → (𝑥 = 0 ↔ (𝑎𝐷𝑏) = 0))
2927, 28bibi12d 348 . . . 4 (𝑥 = (𝑎𝐷𝑏) → (((𝐹𝑥) = 0 ↔ 𝑥 = 0) ↔ ((𝐹‘(𝑎𝐷𝑏)) = 0 ↔ (𝑎𝐷𝑏) = 0)))
30 comet.3 . . . . . 6 ((𝜑𝑥 ∈ (0[,]+∞)) → ((𝐹𝑥) = 0 ↔ 𝑥 = 0))
3130ralrimiva 3182 . . . . 5 (𝜑 → ∀𝑥 ∈ (0[,]+∞)((𝐹𝑥) = 0 ↔ 𝑥 = 0))
3231adantr 483 . . . 4 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → ∀𝑥 ∈ (0[,]+∞)((𝐹𝑥) = 0 ↔ 𝑥 = 0))
3329, 32, 12rspcdva 3625 . . 3 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → ((𝐹‘(𝑎𝐷𝑏)) = 0 ↔ (𝑎𝐷𝑏) = 0))
34 xmeteq0 22948 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑎𝑋𝑏𝑋) → ((𝑎𝐷𝑏) = 0 ↔ 𝑎 = 𝑏))
35343expb 1116 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑎𝑋𝑏𝑋)) → ((𝑎𝐷𝑏) = 0 ↔ 𝑎 = 𝑏))
361, 35sylan 582 . . 3 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → ((𝑎𝐷𝑏) = 0 ↔ 𝑎 = 𝑏))
3725, 33, 363bitrd 307 . 2 ((𝜑 ∧ (𝑎𝑋𝑏𝑋)) → ((𝑎(𝐹𝐷)𝑏) = 0 ↔ 𝑎 = 𝑏))
383adantr 483 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → 𝐹:(0[,]+∞)⟶ℝ*)
39123adantr3 1167 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝑎𝐷𝑏) ∈ (0[,]+∞))
4038, 39ffvelrnd 6852 . . . 4 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝐹‘(𝑎𝐷𝑏)) ∈ ℝ*)
4115adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞))
42 simpr3 1192 . . . . . . 7 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → 𝑐𝑋)
43 simpr1 1190 . . . . . . 7 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → 𝑎𝑋)
4441, 42, 43fovrnd 7320 . . . . . 6 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝑐𝐷𝑎) ∈ (0[,]+∞))
45 simpr2 1191 . . . . . . 7 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → 𝑏𝑋)
4641, 42, 45fovrnd 7320 . . . . . 6 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝑐𝐷𝑏) ∈ (0[,]+∞))
47 ge0xaddcl 12851 . . . . . 6 (((𝑐𝐷𝑎) ∈ (0[,]+∞) ∧ (𝑐𝐷𝑏) ∈ (0[,]+∞)) → ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) ∈ (0[,]+∞))
4844, 46, 47syl2anc 586 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) ∈ (0[,]+∞))
4938, 48ffvelrnd 6852 . . . 4 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) ∈ ℝ*)
5038, 44ffvelrnd 6852 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝐹‘(𝑐𝐷𝑎)) ∈ ℝ*)
5138, 46ffvelrnd 6852 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝐹‘(𝑐𝐷𝑏)) ∈ ℝ*)
5250, 51xaddcld 12695 . . . 4 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏))) ∈ ℝ*)
53 3anrot 1096 . . . . . . 7 ((𝑐𝑋𝑎𝑋𝑏𝑋) ↔ (𝑎𝑋𝑏𝑋𝑐𝑋))
54 xmettri2 22950 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑐𝑋𝑎𝑋𝑏𝑋)) → (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))
5553, 54sylan2br 596 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))
561, 55sylan 582 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))
57 comet.4 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞))) → (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
5857ralrimivva 3191 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
5958adantr 483 . . . . . 6 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
60 breq1 5069 . . . . . . . 8 (𝑥 = (𝑎𝐷𝑏) → (𝑥𝑦 ↔ (𝑎𝐷𝑏) ≤ 𝑦))
6126breq1d 5076 . . . . . . . 8 (𝑥 = (𝑎𝐷𝑏) → ((𝐹𝑥) ≤ (𝐹𝑦) ↔ (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹𝑦)))
6260, 61imbi12d 347 . . . . . . 7 (𝑥 = (𝑎𝐷𝑏) → ((𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ↔ ((𝑎𝐷𝑏) ≤ 𝑦 → (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹𝑦))))
63 breq2 5070 . . . . . . . 8 (𝑦 = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → ((𝑎𝐷𝑏) ≤ 𝑦 ↔ (𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))
64 fveq2 6670 . . . . . . . . 9 (𝑦 = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (𝐹𝑦) = (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))
6564breq2d 5078 . . . . . . . 8 (𝑦 = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → ((𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹𝑦) ↔ (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))))
6663, 65imbi12d 347 . . . . . . 7 (𝑦 = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (((𝑎𝐷𝑏) ≤ 𝑦 → (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹𝑦)) ↔ ((𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))))
6762, 66rspc2va 3634 . . . . . 6 ((((𝑎𝐷𝑏) ∈ (0[,]+∞) ∧ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) ∈ (0[,]+∞)) ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦))) → ((𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))))
6839, 48, 59, 67syl21anc 835 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → ((𝑎𝐷𝑏) ≤ ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)) → (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))))
6956, 68mpd 15 . . . 4 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝐹‘(𝑎𝐷𝑏)) ≤ (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))
70 comet.5 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞))) → (𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹𝑥) +𝑒 (𝐹𝑦)))
7170ralrimivva 3191 . . . . . 6 (𝜑 → ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹𝑥) +𝑒 (𝐹𝑦)))
7271adantr 483 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹𝑥) +𝑒 (𝐹𝑦)))
73 fvoveq1 7179 . . . . . . 7 (𝑥 = (𝑐𝐷𝑎) → (𝐹‘(𝑥 +𝑒 𝑦)) = (𝐹‘((𝑐𝐷𝑎) +𝑒 𝑦)))
74 fveq2 6670 . . . . . . . 8 (𝑥 = (𝑐𝐷𝑎) → (𝐹𝑥) = (𝐹‘(𝑐𝐷𝑎)))
7574oveq1d 7171 . . . . . . 7 (𝑥 = (𝑐𝐷𝑎) → ((𝐹𝑥) +𝑒 (𝐹𝑦)) = ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹𝑦)))
7673, 75breq12d 5079 . . . . . 6 (𝑥 = (𝑐𝐷𝑎) → ((𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹𝑥) +𝑒 (𝐹𝑦)) ↔ (𝐹‘((𝑐𝐷𝑎) +𝑒 𝑦)) ≤ ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹𝑦))))
77 oveq2 7164 . . . . . . . 8 (𝑦 = (𝑐𝐷𝑏) → ((𝑐𝐷𝑎) +𝑒 𝑦) = ((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏)))
7877fveq2d 6674 . . . . . . 7 (𝑦 = (𝑐𝐷𝑏) → (𝐹‘((𝑐𝐷𝑎) +𝑒 𝑦)) = (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))))
79 fveq2 6670 . . . . . . . 8 (𝑦 = (𝑐𝐷𝑏) → (𝐹𝑦) = (𝐹‘(𝑐𝐷𝑏)))
8079oveq2d 7172 . . . . . . 7 (𝑦 = (𝑐𝐷𝑏) → ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹𝑦)) = ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏))))
8178, 80breq12d 5079 . . . . . 6 (𝑦 = (𝑐𝐷𝑏) → ((𝐹‘((𝑐𝐷𝑎) +𝑒 𝑦)) ≤ ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹𝑦)) ↔ (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) ≤ ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏)))))
8276, 81rspc2va 3634 . . . . 5 ((((𝑐𝐷𝑎) ∈ (0[,]+∞) ∧ (𝑐𝐷𝑏) ∈ (0[,]+∞)) ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹𝑥) +𝑒 (𝐹𝑦))) → (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) ≤ ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏))))
8344, 46, 72, 82syl21anc 835 . . . 4 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝐹‘((𝑐𝐷𝑎) +𝑒 (𝑐𝐷𝑏))) ≤ ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏))))
8440, 49, 52, 69, 83xrletrd 12556 . . 3 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝐹‘(𝑎𝐷𝑏)) ≤ ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏))))
85243adantr3 1167 . . 3 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝑎(𝐹𝐷)𝑏) = (𝐹‘(𝑎𝐷𝑏)))
865adantr 483 . . . . . 6 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
8742, 43opelxpd 5593 . . . . . 6 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → ⟨𝑐, 𝑎⟩ ∈ (𝑋 × 𝑋))
88 fvco3 6760 . . . . . 6 ((𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ⟨𝑐, 𝑎⟩ ∈ (𝑋 × 𝑋)) → ((𝐹𝐷)‘⟨𝑐, 𝑎⟩) = (𝐹‘(𝐷‘⟨𝑐, 𝑎⟩)))
8986, 87, 88syl2anc 586 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → ((𝐹𝐷)‘⟨𝑐, 𝑎⟩) = (𝐹‘(𝐷‘⟨𝑐, 𝑎⟩)))
90 df-ov 7159 . . . . 5 (𝑐(𝐹𝐷)𝑎) = ((𝐹𝐷)‘⟨𝑐, 𝑎⟩)
91 df-ov 7159 . . . . . 6 (𝑐𝐷𝑎) = (𝐷‘⟨𝑐, 𝑎⟩)
9291fveq2i 6673 . . . . 5 (𝐹‘(𝑐𝐷𝑎)) = (𝐹‘(𝐷‘⟨𝑐, 𝑎⟩))
9389, 90, 923eqtr4g 2881 . . . 4 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝑐(𝐹𝐷)𝑎) = (𝐹‘(𝑐𝐷𝑎)))
9442, 45opelxpd 5593 . . . . . 6 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → ⟨𝑐, 𝑏⟩ ∈ (𝑋 × 𝑋))
95 fvco3 6760 . . . . . 6 ((𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ⟨𝑐, 𝑏⟩ ∈ (𝑋 × 𝑋)) → ((𝐹𝐷)‘⟨𝑐, 𝑏⟩) = (𝐹‘(𝐷‘⟨𝑐, 𝑏⟩)))
9686, 94, 95syl2anc 586 . . . . 5 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → ((𝐹𝐷)‘⟨𝑐, 𝑏⟩) = (𝐹‘(𝐷‘⟨𝑐, 𝑏⟩)))
97 df-ov 7159 . . . . 5 (𝑐(𝐹𝐷)𝑏) = ((𝐹𝐷)‘⟨𝑐, 𝑏⟩)
98 df-ov 7159 . . . . . 6 (𝑐𝐷𝑏) = (𝐷‘⟨𝑐, 𝑏⟩)
9998fveq2i 6673 . . . . 5 (𝐹‘(𝑐𝐷𝑏)) = (𝐹‘(𝐷‘⟨𝑐, 𝑏⟩))
10096, 97, 993eqtr4g 2881 . . . 4 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝑐(𝐹𝐷)𝑏) = (𝐹‘(𝑐𝐷𝑏)))
10193, 100oveq12d 7174 . . 3 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → ((𝑐(𝐹𝐷)𝑎) +𝑒 (𝑐(𝐹𝐷)𝑏)) = ((𝐹‘(𝑐𝐷𝑎)) +𝑒 (𝐹‘(𝑐𝐷𝑏))))
10284, 85, 1013brtr4d 5098 . 2 ((𝜑 ∧ (𝑎𝑋𝑏𝑋𝑐𝑋)) → (𝑎(𝐹𝐷)𝑏) ≤ ((𝑐(𝐹𝐷)𝑎) +𝑒 (𝑐(𝐹𝐷)𝑏)))
1032, 17, 37, 102isxmetd 22936 1 (𝜑 → (𝐹𝐷) ∈ (∞Met‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  cop 4573   class class class wbr 5066   × cxp 5553  ccom 5559   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  0cc0 10537  +∞cpnf 10672  *cxr 10674  cle 10676   +𝑒 cxad 12506  [,]cicc 12742  ∞Metcxmet 20530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-2 11701  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-icc 12746  df-xmet 20538
This theorem is referenced by:  stdbdxmet  23125
  Copyright terms: Public domain W3C validator