MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cph2ass Structured version   Visualization version   GIF version

Theorem cph2ass 22766
Description: Move scalar multiplication to outside of inner product. See his35 27123. (Contributed by Mario Carneiro, 17-Oct-2015.)
Hypotheses
Ref Expression
cphipcj.h , = (·𝑖𝑊)
cphipcj.v 𝑉 = (Base‘𝑊)
cphass.f 𝐹 = (Scalar‘𝑊)
cphass.k 𝐾 = (Base‘𝐹)
cphass.s · = ( ·𝑠𝑊)
Assertion
Ref Expression
cph2ass ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾) ∧ (𝐶𝑉𝐷𝑉)) → ((𝐴 · 𝐶) , (𝐵 · 𝐷)) = ((𝐴 · (∗‘𝐵)) · (𝐶 , 𝐷)))

Proof of Theorem cph2ass
StepHypRef Expression
1 simp1 1054 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾) ∧ (𝐶𝑉𝐷𝑉)) → 𝑊 ∈ ℂPreHil)
2 simp2r 1081 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾) ∧ (𝐶𝑉𝐷𝑉)) → 𝐵𝐾)
3 simp3l 1082 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾) ∧ (𝐶𝑉𝐷𝑉)) → 𝐶𝑉)
4 simp3r 1083 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾) ∧ (𝐶𝑉𝐷𝑉)) → 𝐷𝑉)
5 cphipcj.h . . . . 5 , = (·𝑖𝑊)
6 cphipcj.v . . . . 5 𝑉 = (Base‘𝑊)
7 cphass.f . . . . 5 𝐹 = (Scalar‘𝑊)
8 cphass.k . . . . 5 𝐾 = (Base‘𝐹)
9 cphass.s . . . . 5 · = ( ·𝑠𝑊)
105, 6, 7, 8, 9cphassr 22765 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐵𝐾𝐶𝑉𝐷𝑉)) → (𝐶 , (𝐵 · 𝐷)) = ((∗‘𝐵) · (𝐶 , 𝐷)))
111, 2, 3, 4, 10syl13anc 1320 . . 3 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾) ∧ (𝐶𝑉𝐷𝑉)) → (𝐶 , (𝐵 · 𝐷)) = ((∗‘𝐵) · (𝐶 , 𝐷)))
1211oveq2d 6543 . 2 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾) ∧ (𝐶𝑉𝐷𝑉)) → (𝐴 · (𝐶 , (𝐵 · 𝐷))) = (𝐴 · ((∗‘𝐵) · (𝐶 , 𝐷))))
13 simp2l 1080 . . 3 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾) ∧ (𝐶𝑉𝐷𝑉)) → 𝐴𝐾)
14 cphlmod 22727 . . . . 5 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod)
15143ad2ant1 1075 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾) ∧ (𝐶𝑉𝐷𝑉)) → 𝑊 ∈ LMod)
166, 7, 9, 8lmodvscl 18652 . . . 4 ((𝑊 ∈ LMod ∧ 𝐵𝐾𝐷𝑉) → (𝐵 · 𝐷) ∈ 𝑉)
1715, 2, 4, 16syl3anc 1318 . . 3 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾) ∧ (𝐶𝑉𝐷𝑉)) → (𝐵 · 𝐷) ∈ 𝑉)
185, 6, 7, 8, 9cphass 22764 . . 3 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐶𝑉 ∧ (𝐵 · 𝐷) ∈ 𝑉)) → ((𝐴 · 𝐶) , (𝐵 · 𝐷)) = (𝐴 · (𝐶 , (𝐵 · 𝐷))))
191, 13, 3, 17, 18syl13anc 1320 . 2 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾) ∧ (𝐶𝑉𝐷𝑉)) → ((𝐴 · 𝐶) , (𝐵 · 𝐷)) = (𝐴 · (𝐶 , (𝐵 · 𝐷))))
20 cphclm 22742 . . . . . 6 (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod)
21203ad2ant1 1075 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾) ∧ (𝐶𝑉𝐷𝑉)) → 𝑊 ∈ ℂMod)
227, 8clmsscn 22635 . . . . 5 (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ)
2321, 22syl 17 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾) ∧ (𝐶𝑉𝐷𝑉)) → 𝐾 ⊆ ℂ)
2423, 13sseldd 3569 . . 3 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾) ∧ (𝐶𝑉𝐷𝑉)) → 𝐴 ∈ ℂ)
2523, 2sseldd 3569 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾) ∧ (𝐶𝑉𝐷𝑉)) → 𝐵 ∈ ℂ)
2625cjcld 13733 . . 3 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾) ∧ (𝐶𝑉𝐷𝑉)) → (∗‘𝐵) ∈ ℂ)
276, 5cphipcl 22744 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝐶𝑉𝐷𝑉) → (𝐶 , 𝐷) ∈ ℂ)
28273expb 1258 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐶𝑉𝐷𝑉)) → (𝐶 , 𝐷) ∈ ℂ)
29283adant2 1073 . . 3 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾) ∧ (𝐶𝑉𝐷𝑉)) → (𝐶 , 𝐷) ∈ ℂ)
3024, 26, 29mulassd 9920 . 2 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾) ∧ (𝐶𝑉𝐷𝑉)) → ((𝐴 · (∗‘𝐵)) · (𝐶 , 𝐷)) = (𝐴 · ((∗‘𝐵) · (𝐶 , 𝐷))))
3112, 19, 303eqtr4d 2654 1 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝐾) ∧ (𝐶𝑉𝐷𝑉)) → ((𝐴 · 𝐶) , (𝐵 · 𝐷)) = ((𝐴 · (∗‘𝐵)) · (𝐶 , 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wss 3540  cfv 5790  (class class class)co 6527  cc 9791   · cmul 9798  ccj 13633  Basecbs 15644  Scalarcsca 15720   ·𝑠 cvsca 15721  ·𝑖cip 15722  LModclmod 18635  ℂModcclm 22618  ℂPreHilccph 22719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4694  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870  ax-addf 9872  ax-mulf 9873
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4368  df-int 4406  df-iun 4452  df-br 4579  df-opab 4639  df-mpt 4640  df-tr 4676  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-1st 7037  df-2nd 7038  df-tpos 7217  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-oadd 7429  df-er 7607  df-map 7724  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-div 10537  df-nn 10871  df-2 10929  df-3 10930  df-4 10931  df-5 10932  df-6 10933  df-7 10934  df-8 10935  df-9 10936  df-n0 11143  df-z 11214  df-dec 11329  df-uz 11523  df-fz 12156  df-seq 12622  df-exp 12681  df-cj 13636  df-struct 15646  df-ndx 15647  df-slot 15648  df-base 15649  df-sets 15650  df-ress 15651  df-plusg 15730  df-mulr 15731  df-starv 15732  df-sca 15733  df-vsca 15734  df-ip 15735  df-tset 15736  df-ple 15737  df-ds 15740  df-unif 15741  df-0g 15874  df-mgm 17014  df-sgrp 17056  df-mnd 17067  df-mhm 17107  df-grp 17197  df-subg 17363  df-ghm 17430  df-cmn 17967  df-mgp 18262  df-ur 18274  df-ring 18321  df-cring 18322  df-oppr 18395  df-dvdsr 18413  df-unit 18414  df-rnghom 18487  df-drng 18521  df-subrg 18550  df-staf 18617  df-srng 18618  df-lmod 18637  df-lmhm 18792  df-lvec 18873  df-sra 18942  df-rgmod 18943  df-cnfld 19517  df-phl 19738  df-nlm 22149  df-clm 22619  df-cph 22721
This theorem is referenced by:  pjthlem1  22961
  Copyright terms: Public domain W3C validator