Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dochord Structured version   Visualization version   GIF version

Theorem dochord 38538
Description: Ordering law for orthocomplement. (Contributed by NM, 12-Aug-2014.)
Hypotheses
Ref Expression
doch11.h 𝐻 = (LHyp‘𝐾)
doch11.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
doch11.o = ((ocH‘𝐾)‘𝑊)
doch11.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
doch11.x (𝜑𝑋 ∈ ran 𝐼)
doch11.y (𝜑𝑌 ∈ ran 𝐼)
Assertion
Ref Expression
dochord (𝜑 → (𝑋𝑌 ↔ ( 𝑌) ⊆ ( 𝑋)))

Proof of Theorem dochord
StepHypRef Expression
1 doch11.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
21adantr 483 . . 3 ((𝜑𝑋𝑌) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 doch11.y . . . . 5 (𝜑𝑌 ∈ ran 𝐼)
4 doch11.h . . . . . 6 𝐻 = (LHyp‘𝐾)
5 eqid 2821 . . . . . 6 ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊)
6 doch11.i . . . . . 6 𝐼 = ((DIsoH‘𝐾)‘𝑊)
7 eqid 2821 . . . . . 6 (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘((DVecH‘𝐾)‘𝑊))
84, 5, 6, 7dihrnss 38446 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌 ∈ ran 𝐼) → 𝑌 ⊆ (Base‘((DVecH‘𝐾)‘𝑊)))
91, 3, 8syl2anc 586 . . . 4 (𝜑𝑌 ⊆ (Base‘((DVecH‘𝐾)‘𝑊)))
109adantr 483 . . 3 ((𝜑𝑋𝑌) → 𝑌 ⊆ (Base‘((DVecH‘𝐾)‘𝑊)))
11 simpr 487 . . 3 ((𝜑𝑋𝑌) → 𝑋𝑌)
12 doch11.o . . . 4 = ((ocH‘𝐾)‘𝑊)
134, 5, 7, 12dochss 38533 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌 ⊆ (Base‘((DVecH‘𝐾)‘𝑊)) ∧ 𝑋𝑌) → ( 𝑌) ⊆ ( 𝑋))
142, 10, 11, 13syl3anc 1367 . 2 ((𝜑𝑋𝑌) → ( 𝑌) ⊆ ( 𝑋))
151adantr 483 . . . 4 ((𝜑 ∧ ( 𝑌) ⊆ ( 𝑋)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
16 doch11.x . . . . . . . 8 (𝜑𝑋 ∈ ran 𝐼)
174, 5, 6, 7dihrnss 38446 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ ran 𝐼) → 𝑋 ⊆ (Base‘((DVecH‘𝐾)‘𝑊)))
181, 16, 17syl2anc 586 . . . . . . 7 (𝜑𝑋 ⊆ (Base‘((DVecH‘𝐾)‘𝑊)))
194, 6, 5, 7, 12dochcl 38521 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) → ( 𝑋) ∈ ran 𝐼)
201, 18, 19syl2anc 586 . . . . . 6 (𝜑 → ( 𝑋) ∈ ran 𝐼)
214, 5, 6, 7dihrnss 38446 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( 𝑋) ∈ ran 𝐼) → ( 𝑋) ⊆ (Base‘((DVecH‘𝐾)‘𝑊)))
221, 20, 21syl2anc 586 . . . . 5 (𝜑 → ( 𝑋) ⊆ (Base‘((DVecH‘𝐾)‘𝑊)))
2322adantr 483 . . . 4 ((𝜑 ∧ ( 𝑌) ⊆ ( 𝑋)) → ( 𝑋) ⊆ (Base‘((DVecH‘𝐾)‘𝑊)))
24 simpr 487 . . . 4 ((𝜑 ∧ ( 𝑌) ⊆ ( 𝑋)) → ( 𝑌) ⊆ ( 𝑋))
254, 5, 7, 12dochss 38533 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( 𝑋) ⊆ (Base‘((DVecH‘𝐾)‘𝑊)) ∧ ( 𝑌) ⊆ ( 𝑋)) → ( ‘( 𝑋)) ⊆ ( ‘( 𝑌)))
2615, 23, 24, 25syl3anc 1367 . . 3 ((𝜑 ∧ ( 𝑌) ⊆ ( 𝑋)) → ( ‘( 𝑋)) ⊆ ( ‘( 𝑌)))
274, 6, 12dochoc 38535 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ ran 𝐼) → ( ‘( 𝑋)) = 𝑋)
281, 16, 27syl2anc 586 . . . 4 (𝜑 → ( ‘( 𝑋)) = 𝑋)
2928adantr 483 . . 3 ((𝜑 ∧ ( 𝑌) ⊆ ( 𝑋)) → ( ‘( 𝑋)) = 𝑋)
304, 6, 12dochoc 38535 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌 ∈ ran 𝐼) → ( ‘( 𝑌)) = 𝑌)
311, 3, 30syl2anc 586 . . . 4 (𝜑 → ( ‘( 𝑌)) = 𝑌)
3231adantr 483 . . 3 ((𝜑 ∧ ( 𝑌) ⊆ ( 𝑋)) → ( ‘( 𝑌)) = 𝑌)
3326, 29, 323sstr3d 4001 . 2 ((𝜑 ∧ ( 𝑌) ⊆ ( 𝑋)) → 𝑋𝑌)
3414, 33impbida 799 1 (𝜑 → (𝑋𝑌 ↔ ( 𝑌) ⊆ ( 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wss 3924  ran crn 5542  cfv 6341  Basecbs 16466  HLchlt 36518  LHypclh 37152  DVecHcdvh 38246  DIsoHcdih 38396  ocHcoch 38515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-cnex 10579  ax-resscn 10580  ax-1cn 10581  ax-icn 10582  ax-addcl 10583  ax-addrcl 10584  ax-mulcl 10585  ax-mulrcl 10586  ax-mulcom 10587  ax-addass 10588  ax-mulass 10589  ax-distr 10590  ax-i2m1 10591  ax-1ne0 10592  ax-1rid 10593  ax-rnegex 10594  ax-rrecex 10595  ax-cnre 10596  ax-pre-lttri 10597  ax-pre-lttrn 10598  ax-pre-ltadd 10599  ax-pre-mulgt0 10600  ax-riotaBAD 36121
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7567  df-1st 7675  df-2nd 7676  df-tpos 7878  df-undef 7925  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-er 8275  df-map 8394  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-pnf 10663  df-mnf 10664  df-xr 10665  df-ltxr 10666  df-le 10667  df-sub 10858  df-neg 10859  df-nn 11625  df-2 11687  df-3 11688  df-4 11689  df-5 11690  df-6 11691  df-n0 11885  df-z 11969  df-uz 12231  df-fz 12883  df-struct 16468  df-ndx 16469  df-slot 16470  df-base 16472  df-sets 16473  df-ress 16474  df-plusg 16561  df-mulr 16562  df-sca 16564  df-vsca 16565  df-0g 16698  df-proset 17521  df-poset 17539  df-plt 17551  df-lub 17567  df-glb 17568  df-join 17569  df-meet 17570  df-p0 17632  df-p1 17633  df-lat 17639  df-clat 17701  df-mgm 17835  df-sgrp 17884  df-mnd 17895  df-submnd 17940  df-grp 18089  df-minusg 18090  df-sbg 18091  df-subg 18259  df-cntz 18430  df-lsm 18744  df-cmn 18891  df-abl 18892  df-mgp 19223  df-ur 19235  df-ring 19282  df-oppr 19356  df-dvdsr 19374  df-unit 19375  df-invr 19405  df-dvr 19416  df-drng 19487  df-lmod 19619  df-lss 19687  df-lsp 19727  df-lvec 19858  df-oposet 36344  df-ol 36346  df-oml 36347  df-covers 36434  df-ats 36435  df-atl 36466  df-cvlat 36490  df-hlat 36519  df-llines 36666  df-lplanes 36667  df-lvols 36668  df-lines 36669  df-psubsp 36671  df-pmap 36672  df-padd 36964  df-lhyp 37156  df-laut 37157  df-ldil 37272  df-ltrn 37273  df-trl 37327  df-tendo 37923  df-edring 37925  df-disoa 38197  df-dvech 38247  df-dib 38307  df-dic 38341  df-dih 38397  df-doch 38516
This theorem is referenced by:  dochord2N  38539  dochord3  38540  doch11  38541  dochsordN  38542  dochsatshpb  38620  hdmapoc  39099
  Copyright terms: Public domain W3C validator