Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dochord Structured version   Visualization version   GIF version

Theorem dochord 35460
Description: Ordering law for orthocomplement. (Contributed by NM, 12-Aug-2014.)
Hypotheses
Ref Expression
doch11.h 𝐻 = (LHyp‘𝐾)
doch11.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
doch11.o = ((ocH‘𝐾)‘𝑊)
doch11.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
doch11.x (𝜑𝑋 ∈ ran 𝐼)
doch11.y (𝜑𝑌 ∈ ran 𝐼)
Assertion
Ref Expression
dochord (𝜑 → (𝑋𝑌 ↔ ( 𝑌) ⊆ ( 𝑋)))

Proof of Theorem dochord
StepHypRef Expression
1 doch11.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
21adantr 479 . . 3 ((𝜑𝑋𝑌) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 doch11.y . . . . 5 (𝜑𝑌 ∈ ran 𝐼)
4 doch11.h . . . . . 6 𝐻 = (LHyp‘𝐾)
5 eqid 2609 . . . . . 6 ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊)
6 doch11.i . . . . . 6 𝐼 = ((DIsoH‘𝐾)‘𝑊)
7 eqid 2609 . . . . . 6 (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘((DVecH‘𝐾)‘𝑊))
84, 5, 6, 7dihrnss 35368 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌 ∈ ran 𝐼) → 𝑌 ⊆ (Base‘((DVecH‘𝐾)‘𝑊)))
91, 3, 8syl2anc 690 . . . 4 (𝜑𝑌 ⊆ (Base‘((DVecH‘𝐾)‘𝑊)))
109adantr 479 . . 3 ((𝜑𝑋𝑌) → 𝑌 ⊆ (Base‘((DVecH‘𝐾)‘𝑊)))
11 simpr 475 . . 3 ((𝜑𝑋𝑌) → 𝑋𝑌)
12 doch11.o . . . 4 = ((ocH‘𝐾)‘𝑊)
134, 5, 7, 12dochss 35455 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌 ⊆ (Base‘((DVecH‘𝐾)‘𝑊)) ∧ 𝑋𝑌) → ( 𝑌) ⊆ ( 𝑋))
142, 10, 11, 13syl3anc 1317 . 2 ((𝜑𝑋𝑌) → ( 𝑌) ⊆ ( 𝑋))
151adantr 479 . . . 4 ((𝜑 ∧ ( 𝑌) ⊆ ( 𝑋)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
16 doch11.x . . . . . . . 8 (𝜑𝑋 ∈ ran 𝐼)
174, 5, 6, 7dihrnss 35368 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ ran 𝐼) → 𝑋 ⊆ (Base‘((DVecH‘𝐾)‘𝑊)))
181, 16, 17syl2anc 690 . . . . . . 7 (𝜑𝑋 ⊆ (Base‘((DVecH‘𝐾)‘𝑊)))
194, 6, 5, 7, 12dochcl 35443 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ⊆ (Base‘((DVecH‘𝐾)‘𝑊))) → ( 𝑋) ∈ ran 𝐼)
201, 18, 19syl2anc 690 . . . . . 6 (𝜑 → ( 𝑋) ∈ ran 𝐼)
214, 5, 6, 7dihrnss 35368 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( 𝑋) ∈ ran 𝐼) → ( 𝑋) ⊆ (Base‘((DVecH‘𝐾)‘𝑊)))
221, 20, 21syl2anc 690 . . . . 5 (𝜑 → ( 𝑋) ⊆ (Base‘((DVecH‘𝐾)‘𝑊)))
2322adantr 479 . . . 4 ((𝜑 ∧ ( 𝑌) ⊆ ( 𝑋)) → ( 𝑋) ⊆ (Base‘((DVecH‘𝐾)‘𝑊)))
24 simpr 475 . . . 4 ((𝜑 ∧ ( 𝑌) ⊆ ( 𝑋)) → ( 𝑌) ⊆ ( 𝑋))
254, 5, 7, 12dochss 35455 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( 𝑋) ⊆ (Base‘((DVecH‘𝐾)‘𝑊)) ∧ ( 𝑌) ⊆ ( 𝑋)) → ( ‘( 𝑋)) ⊆ ( ‘( 𝑌)))
2615, 23, 24, 25syl3anc 1317 . . 3 ((𝜑 ∧ ( 𝑌) ⊆ ( 𝑋)) → ( ‘( 𝑋)) ⊆ ( ‘( 𝑌)))
274, 6, 12dochoc 35457 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋 ∈ ran 𝐼) → ( ‘( 𝑋)) = 𝑋)
281, 16, 27syl2anc 690 . . . 4 (𝜑 → ( ‘( 𝑋)) = 𝑋)
2928adantr 479 . . 3 ((𝜑 ∧ ( 𝑌) ⊆ ( 𝑋)) → ( ‘( 𝑋)) = 𝑋)
304, 6, 12dochoc 35457 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌 ∈ ran 𝐼) → ( ‘( 𝑌)) = 𝑌)
311, 3, 30syl2anc 690 . . . 4 (𝜑 → ( ‘( 𝑌)) = 𝑌)
3231adantr 479 . . 3 ((𝜑 ∧ ( 𝑌) ⊆ ( 𝑋)) → ( ‘( 𝑌)) = 𝑌)
3326, 29, 323sstr3d 3609 . 2 ((𝜑 ∧ ( 𝑌) ⊆ ( 𝑋)) → 𝑋𝑌)
3414, 33impbida 872 1 (𝜑 → (𝑋𝑌 ↔ ( 𝑌) ⊆ ( 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wss 3539  ran crn 5028  cfv 5789  Basecbs 15643  HLchlt 33438  LHypclh 34071  DVecHcdvh 35168  DIsoHcdih 35318  ocHcoch 35437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-riotaBAD 33040
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-om 6935  df-1st 7036  df-2nd 7037  df-tpos 7216  df-undef 7263  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-map 7723  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10870  df-2 10928  df-3 10929  df-4 10930  df-5 10931  df-6 10932  df-n0 11142  df-z 11213  df-uz 11522  df-fz 12155  df-struct 15645  df-ndx 15646  df-slot 15647  df-base 15648  df-sets 15649  df-ress 15650  df-plusg 15729  df-mulr 15730  df-sca 15732  df-vsca 15733  df-0g 15873  df-preset 16699  df-poset 16717  df-plt 16729  df-lub 16745  df-glb 16746  df-join 16747  df-meet 16748  df-p0 16810  df-p1 16811  df-lat 16817  df-clat 16879  df-mgm 17013  df-sgrp 17055  df-mnd 17066  df-submnd 17107  df-grp 17196  df-minusg 17197  df-sbg 17198  df-subg 17362  df-cntz 17521  df-lsm 17822  df-cmn 17966  df-abl 17967  df-mgp 18261  df-ur 18273  df-ring 18320  df-oppr 18394  df-dvdsr 18412  df-unit 18413  df-invr 18443  df-dvr 18454  df-drng 18520  df-lmod 18636  df-lss 18702  df-lsp 18741  df-lvec 18872  df-oposet 33264  df-ol 33266  df-oml 33267  df-covers 33354  df-ats 33355  df-atl 33386  df-cvlat 33410  df-hlat 33439  df-llines 33585  df-lplanes 33586  df-lvols 33587  df-lines 33588  df-psubsp 33590  df-pmap 33591  df-padd 33883  df-lhyp 34075  df-laut 34076  df-ldil 34191  df-ltrn 34192  df-trl 34247  df-tendo 34844  df-edring 34846  df-disoa 35119  df-dvech 35169  df-dib 35229  df-dic 35263  df-dih 35319  df-doch 35438
This theorem is referenced by:  dochord2N  35461  dochord3  35462  doch11  35463  dochsordN  35464  dochsatshpb  35542  hdmapoc  36024
  Copyright terms: Public domain W3C validator