![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvrcan1 | Structured version Visualization version GIF version |
Description: A cancellation law for division. (divcan1 10732 analog.) (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
dvrass.b | ⊢ 𝐵 = (Base‘𝑅) |
dvrass.o | ⊢ 𝑈 = (Unit‘𝑅) |
dvrass.d | ⊢ / = (/r‘𝑅) |
dvrass.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
dvrcan1 | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 / 𝑌) · 𝑌) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvrass.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
2 | dvrass.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
3 | dvrass.o | . . . . 5 ⊢ 𝑈 = (Unit‘𝑅) | |
4 | eqid 2651 | . . . . 5 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
5 | dvrass.d | . . . . 5 ⊢ / = (/r‘𝑅) | |
6 | 1, 2, 3, 4, 5 | dvrval 18731 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) = (𝑋 · ((invr‘𝑅)‘𝑌))) |
7 | 6 | 3adant1 1099 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) = (𝑋 · ((invr‘𝑅)‘𝑌))) |
8 | 7 | oveq1d 6705 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 / 𝑌) · 𝑌) = ((𝑋 · ((invr‘𝑅)‘𝑌)) · 𝑌)) |
9 | simp1 1081 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → 𝑅 ∈ Ring) | |
10 | simp2 1082 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ 𝐵) | |
11 | 3, 4, 1 | ringinvcl 18722 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → ((invr‘𝑅)‘𝑌) ∈ 𝐵) |
12 | 11 | 3adant2 1100 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((invr‘𝑅)‘𝑌) ∈ 𝐵) |
13 | 1, 3 | unitcl 18705 | . . . . 5 ⊢ (𝑌 ∈ 𝑈 → 𝑌 ∈ 𝐵) |
14 | 13 | 3ad2ant3 1104 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ 𝐵) |
15 | 1, 2 | ringass 18610 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ ((invr‘𝑅)‘𝑌) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 · ((invr‘𝑅)‘𝑌)) · 𝑌) = (𝑋 · (((invr‘𝑅)‘𝑌) · 𝑌))) |
16 | 9, 10, 12, 14, 15 | syl13anc 1368 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 · ((invr‘𝑅)‘𝑌)) · 𝑌) = (𝑋 · (((invr‘𝑅)‘𝑌) · 𝑌))) |
17 | eqid 2651 | . . . . . . 7 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
18 | 3, 4, 2, 17 | unitlinv 18723 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → (((invr‘𝑅)‘𝑌) · 𝑌) = (1r‘𝑅)) |
19 | 18 | 3adant2 1100 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (((invr‘𝑅)‘𝑌) · 𝑌) = (1r‘𝑅)) |
20 | 19 | oveq2d 6706 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 · (((invr‘𝑅)‘𝑌) · 𝑌)) = (𝑋 · (1r‘𝑅))) |
21 | 1, 2, 17 | ringridm 18618 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · (1r‘𝑅)) = 𝑋) |
22 | 21 | 3adant3 1101 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 · (1r‘𝑅)) = 𝑋) |
23 | 20, 22 | eqtrd 2685 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 · (((invr‘𝑅)‘𝑌) · 𝑌)) = 𝑋) |
24 | 16, 23 | eqtrd 2685 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 · ((invr‘𝑅)‘𝑌)) · 𝑌) = 𝑋) |
25 | 8, 24 | eqtrd 2685 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 / 𝑌) · 𝑌) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ‘cfv 5926 (class class class)co 6690 Basecbs 15904 .rcmulr 15989 1rcur 18547 Ringcrg 18593 Unitcui 18685 invrcinvr 18717 /rcdvr 18728 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-tpos 7397 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-0g 16149 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-grp 17472 df-minusg 17473 df-mgp 18536 df-ur 18548 df-ring 18595 df-oppr 18669 df-dvdsr 18687 df-unit 18688 df-invr 18718 df-dvr 18729 |
This theorem is referenced by: dvreq1 18739 irredrmul 18753 isdrng2 18805 cnflddiv 19824 isarchiofld 29945 |
Copyright terms: Public domain | W3C validator |